Isolation number of maximal outerplanar graphs

被引:30
|
作者
Tokunaga, Shin-ichi [1 ]
Jiarasuksakun, Thiradet [2 ]
Kaemawichanurat, Pawaton [2 ,3 ]
机构
[1] Tokyo Med & Dent Univ, Coll Liberal Arts & Sci, Tokyo, Japan
[2] King Mongkuts Univ Technol Thonburi, Fac Sci, Dept Math, Bangkok, Thailand
[3] King Mongkuts Univ Technol Thonburi, Fac Sci, Theoret & Computat Sci Ctr, Bangkok, Thailand
关键词
Partial-domination; Isolation number; Maximal outerplanar graphs; TOTAL DOMINATION; SETS;
D O I
10.1016/j.dam.2019.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset S of vertices in a graph G is called an isolating set if V(G) \ N-G[S] is an independent set of G. The isolation number (iota)(G) is the minimum cardinality of an isolating set of G. Let G be a maximal outerplanar graph of order n with n(2) vertices of degree 2. It was previously proved that (iota)(G) <= n/4. In this paper, we improve this bound to be (iota)(G) <= {n+n(2)/5 when n(2) <= n/4, n-n(2)/3 otherwise, and these bounds are best possible. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 218
页数:4
相关论文
共 50 条
  • [41] On the Geometric Ramsey Number of Outerplanar Graphs
    Josef Cibulka
    Pu Gao
    Marek Krčál
    Tomáš Valla
    Pavel Valtr
    Discrete & Computational Geometry, 2015, 53 : 64 - 79
  • [42] Injective Chromatic Number of Outerplanar Graphs
    Mozafari-Nia, Mahsa
    Omoomi, Behnaz
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1309 - 1320
  • [43] On the Geometric Ramsey Number of Outerplanar Graphs
    Cibulka, Josef
    Gao, Pu
    Krcal, Marek
    Valla, Tomas
    Valtr, Pavel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (01) : 64 - 79
  • [44] The incidence coloring number of Halin graphs and outerplanar graphs
    Wang, SD
    Chen, DL
    Pang, SC
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 397 - 405
  • [45] Bounds on the Fibonacci number of a maximal outerplanar graph
    Alameddine, AF
    FIBONACCI QUARTERLY, 1998, 36 (03): : 206 - 210
  • [46] Maximal outerplanar graphs as chordal graphs, path-neighborhood graphs, and triangle graphs
    Laskar, R. C.
    Mulder, Henry Martyn
    Novick, B.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 52 : 185 - 195
  • [47] INDEPENDENT SETS OF CARDINALITY s OF MAXIMAL OUTERPLANAR GRAPHS
    Estes, John
    Staton, William
    Wei, Bing
    FIBONACCI QUARTERLY, 2013, 51 (02): : 147 - 150
  • [48] Sharp bounds for Zagreb indices of maximal outerplanar graphs
    Hou, Ailin
    Li, Shuchao
    Song, Lanzhen
    Wei, Bing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 252 - 269
  • [49] Distance domination, guarding and covering of maximal outerplanar graphs
    Canales, Santiago
    Hernandez, Gregorio
    Martins, Mafalda
    Matos, Ines
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 41 - 49
  • [50] Domination and Outer Connected Domination in Maximal Outerplanar Graphs
    Zhuang, Wei
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2679 - 2696