Isolation number of maximal outerplanar graphs

被引:30
|
作者
Tokunaga, Shin-ichi [1 ]
Jiarasuksakun, Thiradet [2 ]
Kaemawichanurat, Pawaton [2 ,3 ]
机构
[1] Tokyo Med & Dent Univ, Coll Liberal Arts & Sci, Tokyo, Japan
[2] King Mongkuts Univ Technol Thonburi, Fac Sci, Dept Math, Bangkok, Thailand
[3] King Mongkuts Univ Technol Thonburi, Fac Sci, Theoret & Computat Sci Ctr, Bangkok, Thailand
关键词
Partial-domination; Isolation number; Maximal outerplanar graphs; TOTAL DOMINATION; SETS;
D O I
10.1016/j.dam.2019.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset S of vertices in a graph G is called an isolating set if V(G) \ N-G[S] is an independent set of G. The isolation number (iota)(G) is the minimum cardinality of an isolating set of G. Let G be a maximal outerplanar graph of order n with n(2) vertices of degree 2. It was previously proved that (iota)(G) <= n/4. In this paper, we improve this bound to be (iota)(G) <= {n+n(2)/5 when n(2) <= n/4, n-n(2)/3 otherwise, and these bounds are best possible. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 218
页数:4
相关论文
共 50 条
  • [31] Symmetry breaking in planar and maximal outerplanar graphs
    Alikhani, Saeid
    Soltani, Samaneh
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (01)
  • [32] A characterisation of eccentric sequences of maximal outerplanar graphs
    Dankelmann, P.
    Erwin, D.
    Goddard, W.
    Mukwembi, S.
    Swart, H.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 58 : 376 - 391
  • [33] Entries of the bottleneck matrices of maximal outerplanar graphs
    Molitierno, Jason J.
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (04): : 776 - 797
  • [34] Convex dominating sets in maximal outerplanar graphs
    Lemanska, Magdalena
    Rivera-Campo, Eduardo
    Ziemann, Radoslaw
    Zuazua, Rita
    Zylinski, Pawei
    DISCRETE APPLIED MATHEMATICS, 2019, 265 : 142 - 157
  • [35] Total domination in maximal outerplanar graphs II
    Dorfling, Michael
    Hattingh, Johannes H.
    Jonck, Elizabeth
    DISCRETE MATHEMATICS, 2016, 339 (03) : 1180 - 1188
  • [36] On dominating sets of maximal outerplanar and planar graphs
    Li, Zepeng
    Zhu, Enqiang
    Shao, Zehui
    Xu, Jin
    Discrete Applied Mathematics, 2016, 198 : 164 - 169
  • [37] Total Dominating Sets in Maximal Outerplanar Graphs
    Lemanska, Magdalena
    Zuazua, Rita
    Zylinski, Pawel
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 991 - 998
  • [38] On the secure domination numbers of maximal outerplanar graphs
    Araki, Toru
    Yumoto, Issei
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 23 - 29
  • [39] Total Dominating Sets in Maximal Outerplanar Graphs
    Magdalena Lemańska
    Rita Zuazua
    Paweł Żyliński
    Graphs and Combinatorics, 2017, 33 : 991 - 998
  • [40] Game chromatic number of outerplanar graphs
    Guan, DJ
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 1999, 30 (01) : 67 - 70