Isolation number of maximal outerplanar graphs

被引:30
|
作者
Tokunaga, Shin-ichi [1 ]
Jiarasuksakun, Thiradet [2 ]
Kaemawichanurat, Pawaton [2 ,3 ]
机构
[1] Tokyo Med & Dent Univ, Coll Liberal Arts & Sci, Tokyo, Japan
[2] King Mongkuts Univ Technol Thonburi, Fac Sci, Dept Math, Bangkok, Thailand
[3] King Mongkuts Univ Technol Thonburi, Fac Sci, Theoret & Computat Sci Ctr, Bangkok, Thailand
关键词
Partial-domination; Isolation number; Maximal outerplanar graphs; TOTAL DOMINATION; SETS;
D O I
10.1016/j.dam.2019.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset S of vertices in a graph G is called an isolating set if V(G) \ N-G[S] is an independent set of G. The isolation number (iota)(G) is the minimum cardinality of an isolating set of G. Let G be a maximal outerplanar graph of order n with n(2) vertices of degree 2. It was previously proved that (iota)(G) <= n/4. In this paper, we improve this bound to be (iota)(G) <= {n+n(2)/5 when n(2) <= n/4, n-n(2)/3 otherwise, and these bounds are best possible. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 218
页数:4
相关论文
共 50 条