REFLECTED BROWNIAN MOTION ON SIMPLE NESTED FRACTALS

被引:4
|
作者
Kaleta, Kamil [1 ]
Olszewski, Mariusz [1 ]
Pietruska-Paluba, Katarzyna [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
关键词
Subordinate Brownian Motion; Projection; Good Labeling Property; Reflected Process; Nested Fractal; Sierpinski Gasket; Neumann Boundary Conditions; Integrated Density of States; DENSITY-OF-STATES; LIFSCHITZ SINGULARITY; PERIODIC-FUNCTIONS; SIERPINSKI; DIFFUSION; GASKET;
D O I
10.1142/S0218348X19501044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a large class of planar simple nested fractals, we prove the existence of the reflected diffusion on a complex of an arbitrary size. Such a process is obtained as a folding projection of the free Brownian motion from the unbounded fractal. We give sharp necessary geometric conditions for the fractal under which this projection can be well defined, and illustrate them by numerous examples. We then construct a proper version of the transition probability densities for the reflected process and we prove that it is a continuous, bounded and symmetric function which satisfies the Chapman-Kolmogorov equations. These provide us with further regularity properties of the reflected process such us Markov, Feller and strong Feller property.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Reflected Brownian motion in generic triangles and wedges
    Kager, Wouter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (05) : 539 - 549
  • [42] On the infimum attained by the reflected fractional Brownian motion
    Debicki, K.
    Kosinski, K. M.
    EXTREMES, 2014, 17 (03) : 431 - 446
  • [43] The Hitting Time Density for a Reflected Brownian Motion
    Hu, Qin
    Wang, Yongjin
    Yang, Xuewei
    COMPUTATIONAL ECONOMICS, 2012, 40 (01) : 1 - 18
  • [44] Reflected Brownian motion: selection, approximation and linearization
    Arnaudon, Marc
    Li, Xue-Mei
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [45] The Hitting Time Density for a Reflected Brownian Motion
    Qin Hu
    Yongjin Wang
    Xuewei Yang
    Computational Economics, 2012, 40 : 1 - 18
  • [46] Exponential ergodicity and convergence for generalized reflected Brownian motion
    Tang, Wenpin
    QUEUEING SYSTEMS, 2019, 92 (1-2) : 83 - 101
  • [47] Residence times and other functionals of reflected Brownian motion
    Grebenkov, D. S.
    PHYSICAL REVIEW E, 2007, 76 (04):
  • [48] Reflected fractional Brownian motion in one and higher dimensions
    Vojta, Thomas
    Halladay, Samuel
    Skinner, Sarah
    Janusonis, Skirmantas
    Guggenberger, Tobias
    Metzler, Ralf
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [49] REFLECTED BROWNIAN-MOTION IN A CONE - SEMIMARTINGALE PROPERTY
    KWON, Y
    PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (02) : 211 - 226
  • [50] REFLECTED BROWNIAN-MOTION IN A WEDGE - SEMIMARTINGALE PROPERTY
    WILLIAMS, RJ
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (02): : 161 - 176