REFLECTED BROWNIAN MOTION ON SIMPLE NESTED FRACTALS

被引:4
|
作者
Kaleta, Kamil [1 ]
Olszewski, Mariusz [1 ]
Pietruska-Paluba, Katarzyna [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
关键词
Subordinate Brownian Motion; Projection; Good Labeling Property; Reflected Process; Nested Fractal; Sierpinski Gasket; Neumann Boundary Conditions; Integrated Density of States; DENSITY-OF-STATES; LIFSCHITZ SINGULARITY; PERIODIC-FUNCTIONS; SIERPINSKI; DIFFUSION; GASKET;
D O I
10.1142/S0218348X19501044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a large class of planar simple nested fractals, we prove the existence of the reflected diffusion on a complex of an arbitrary size. Such a process is obtained as a folding projection of the free Brownian motion from the unbounded fractal. We give sharp necessary geometric conditions for the fractal under which this projection can be well defined, and illustrate them by numerous examples. We then construct a proper version of the transition probability densities for the reflected process and we prove that it is a continuous, bounded and symmetric function which satisfies the Chapman-Kolmogorov equations. These provide us with further regularity properties of the reflected process such us Markov, Feller and strong Feller property.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] EXACT SIMULATION OF MULTIDIMENSIONAL REFLECTED BROWNIAN MOTION
    Blanchet, Jose
    Murthy, Karthyek
    JOURNAL OF APPLIED PROBABILITY, 2018, 55 (01) : 137 - 156
  • [32] ON THE DISTRIBUTION OF MULTIDIMENSIONAL REFLECTED BROWNIAN-MOTION
    HARRISON, JM
    REIMAN, MI
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 41 (02) : 345 - 361
  • [33] On the rate of convergence to equilibrium for reflected Brownian motion
    Glynn, Peter W.
    Wang, Rob J.
    QUEUEING SYSTEMS, 2018, 89 (1-2) : 165 - 197
  • [34] REFLECTED BROWNIAN-MOTION IN A POLYHEDRAL REGION
    WILLIAMS, RJ
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 10 - 11
  • [35] On the infimum attained by the reflected fractional Brownian motion
    K. Dębicki
    K. M. Kosiński
    Extremes, 2014, 17 : 431 - 446
  • [36] DISCRETIZATION ERROR OF REFLECTED FRACTIONAL BROWNIAN MOTION
    McGlaughlin, Peter
    Chronopoulou, Alexandra
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 270 - 276
  • [37] Set estimation from reflected Brownian motion
    Cholaquidis, Alejandro
    Fraiman, Ricardo
    Lugosi, Gabor
    Pateiro-Lopez, Beatriz
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (05) : 1057 - 1078
  • [38] Arbitrage problems with reflected geometric Brownian motion
    Dean Buckner
    Kevin Dowd
    Hardy Hulley
    Finance and Stochastics, 2024, 28 : 1 - 26
  • [39] MEASURING THE INITIAL TRANSIENT: REFLECTED BROWNIAN MOTION
    Wang, Rob J.
    Glynn, Peter W.
    PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 652 - 661
  • [40] Reflected Brownian Motion in Time Dependent Domains
    Burdzy, Krzysztof
    BROWNIAN MOTION AND ITS APPLICATIONS TO MATHEMATICAL ANALYSIS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLIII - 2013, 2014, 2106 : 107 - 131