Comparative performance of lung cancer risk models to define lung screening eligibility in the United Kingdom

被引:32
|
作者
Robbins, Hilary A. [1 ]
Alcala, Karine [1 ]
Swerdlow, Anthony J. [2 ]
Schoemaker, Minouk J. [2 ]
Wareham, Nick [3 ]
Travis, Ruth C. [4 ]
Crosbie, Philip A. J. [5 ]
Callister, Matthew [6 ]
Baldwin, David R. [7 ,8 ]
Landy, Rebecca [9 ]
Johansson, Mattias [1 ]
机构
[1] Int Agcy Res Canc, Lyon, France
[2] Inst Canc Res, London, England
[3] Univ Cambridge, Cambridge, England
[4] Univ Oxford, Nuffield Dept Populat Hlth, Canc Epidemiol Unit, Oxford, England
[5] Univ Manchester, Manchester, Lancs, England
[6] Leeds Teaching Hosp, Leeds, W Yorkshire, England
[7] Nottingham Univ Hosp, Nottingham, England
[8] Univ Nottingham, Nottingham, England
[9] NCI, Div Canc Epidemiol & Genet, Dept Hlth & Human Serv, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
DOSE COMPUTED-TOMOGRAPHY; INDIVIDUALS; SELECTION; CRITERIA; TRIAL;
D O I
10.1038/s41416-021-01278-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The National Health Service England (NHS) classifies individuals as eligible for lung cancer screening using two risk prediction models, PLCOm2012 and Liverpool Lung Project-v2 (LLPv2). However, no study has compared the performance of lung cancer risk models in the UK. Methods We analysed current and former smokers aged 40-80 years in the UK Biobank (N = 217,199), EPIC-UK (N = 30,813), and Generations Study (N = 25,777). We quantified model calibration (ratio of expected to observed cases, E/O) and discrimination (AUC). Results Risk discrimination in UK Biobank was best for the Lung Cancer Death Risk Assessment Tool (LCDRAT, AUC = 0.82, 95% CI = 0.81-0.84), followed by the LCRAT (AUC = 0.81, 95% CI = 0.79-0.82) and the Bach model (AUC = 0.80, 95% CI = 0.79-0.81). Results were similar in EPIC-UK and the Generations Study. All models overestimated risk in all cohorts, with E/O in UK Biobank ranging from 1.20 for LLPv3 (95% CI = 1.14-1.27) to 2.16 for LLPv2 (95% CI = 2.05-2.28). Overestimation increased with area-level socioeconomic status. In the combined cohorts, USPSTF 2013 criteria classified 50.7% of future cases as screening eligible. The LCDRAT and LCRAT identified 60.9%, followed by PLCOm2012 (58.3%), Bach (58.0%), LLPv3 (56.6%), and LLPv2 (53.7%). Conclusion In UK cohorts, the ability of risk prediction models to classify future lung cancer cases as eligible for screening was best for LCDRAT/LCRAT, very good for PLCOm2012, and lowest for LLPv2. Our results highlight the importance of validating prediction tools in specific countries.
引用
收藏
页码:2026 / 2034
页数:9
相关论文
共 50 条
  • [21] The uniqueness of the United Kingdom Lung Cancer Screening trial (UKLS) - a population screening study
    McRonald, F.
    Baldwin, D. R.
    Devaraj, A.
    Brain, K.
    Eisen, T.
    Holeman, J.
    Ledson, M.
    Screaton, N.
    Rintoul, R. C.
    Yadegarfar, G.
    Hands, C.
    Lifford, K.
    Whynes, D.
    Kerr, K. M.
    Page, R.
    Parmar, M.
    Weller, D.
    Williamson, P.
    Hansell, D.
    Duffy, S. W.
    Field, J. K.
    LUNG CANCER, 2013, 79 : S28 - S29
  • [22] Disparities in Lung Cancer Screening Eligibility Among High-Risk Individuals
    Gudina, Abdi
    Kamen, Charles
    Gilmore, Nikesha
    Arana-Chicas, Evelyn
    Kehoe, Lee
    Kleckner, Amber
    Cupertino, Ana Paula
    PSYCHO-ONCOLOGY, 2022, 31 : 42 - 43
  • [23] Lung cancer screening: screening frequency and lung cancer risk
    Manser, Renee L.
    TRANSLATIONAL CANCER RESEARCH, 2016, 5 : S1227 - S1232
  • [24] Pitfalls in interpreting calibration in comparative evaluations of risk models for precision lung cancer screening
    Brenner, Hermann
    Frick, Clara
    Seum, Teresa
    Bhardwaj, Megha
    NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [25] LUNG CANCER SCREENING ELIGIBILITY AND UPTAKE BY LUNG CANCER RISK IN BLACK AND WHITE PATIENTS IN TWO HEALTH CARE SYSTEMS
    Japuntich, Sandra
    Walaska, Kristen
    Friedman, Elena
    Balletto, Brittany
    Cameron, Sarah
    Tanzer, Joshua Ray
    Fang, Pearl
    Clark, Melissa
    Fava, Joseph
    Busch, Andrew
    Breault, Christopher
    Rosen, Rochelle
    CHEST, 2023, 164 (04) : 4133A - 4133A
  • [26] Economic impact of using risk models for eligibility selection to the International lung screening Trial
    Cressman, Sonya
    Weber, Marianne F.
    Ngo, Preston J.
    Wade, Stephen
    Harpaz, Silvia Behar
    Caruana, Michael
    Tremblay, Alain
    Manser, Renee
    Stone, Emily
    Atkar-Khattra, Sukhinder
    Karikios, Deme
    Ho, Cheryl
    Fernandes, Aleisha
    Weng, Jing Yi
    McWilliams, Annette
    Myers, Renelle
    Mayo, John
    Yee, John
    Yuan, Ren
    Marshall, Henry M.
    Fong, Kwun M.
    Lam, Stephen
    Canfell, Karen
    Tammemagi, Martin C.
    LUNG CANCER, 2023, 176 : 38 - 45
  • [27] Racial and Ethnic Disparities in Lung Cancer Screening Eligibility
    Narayan, Anand K.
    Chowdhry, Divya N.
    Fintelmann, Florian J.
    Little, Brent P.
    Shepard, Jo-Anne O.
    Flores, Efren J.
    RADIOLOGY, 2021, 301 (03) : 712 - 720
  • [28] Eligibility for lung cancer screening in Greece: a retrospective study
    Panagiotou, Emmanouil
    Livanou, Mirsini
    Karachaliou, Anastasia
    Gkiozos, Ioannis
    Kokkotou, Eleni
    Mani, Maria
    Stournara, Lamprini
    Tsagouli, Sofia
    Vathiotis, Ioannis
    Charpidou, Andriani
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [29] Deep Disparities Persist in Lung Cancer Screening Eligibility
    Jacobs, Paula M.
    Springfield, Sanya A.
    RADIOLOGY, 2021, 301 (03) : 721 - 723
  • [30] Assessment of Biomarker Testing for Lung Cancer Screening Eligibility
    Larose, Tricia L.
    Meheus, Filip
    Brennan, Paul
    Johansson, Mattias
    Robbins, Hilary A.
    JAMA NETWORK OPEN, 2020, 3 (03)