Constrained multi-objective evolutionary algorithm with an improved two-archive strategy

被引:14
|
作者
Li, Wei [1 ]
Gong, Wenyin [1 ]
Ming, Fei [1 ]
Wang, Ling [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
关键词
Constrained multi-objective optimization; Evolutionary algorithm; Two archive; Fitness evaluation; Mating selection; OPTIMIZATION; DECOMPOSITION; PERFORMANCE;
D O I
10.1016/j.knosys.2022.108732
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solving constrained multi-objective optimization problems (CMOPs) obtains considerable attention in the evolutionary computation community. Various constrained multi-objective evolutionary algorithms (CMOEAs) have been developed for the CMOPs in the last few decades. Among the CMOEA techniques, two archive strategy is an effective approach, and enhancing the performance of C-TAEA based on two archive framework is a promising direction. This paper proposes an improved two-archive-based evolutionary algorithm, referred to as C-TAEA2. In C-TAEA2, a new fitness evaluation strategy for the convergence archive (CA) is presented to achieve better convergence. Additionally, a fitness evaluation method is proposed to evaluate solutions of the diversity archive (DA) to further promote diversity. Moreover, new update strategies are designed for both CA and DA to reduce the computational cost. Based on the new fitness evaluation strategies, a new mating selection strategy is also developed. Experiments on different benchmark CMOPs demonstrate that C-TAEA2 obtained better or highly competitive performance compared to other state-of-the-art CMOEAs. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] An archive-assisted multi-modal multi-objective evolutionary algorithm
    Chen, Peng
    Li, Zhimeng
    Qiao, Kangjia
    Suganthan, P. N.
    Ban, Xuanxuan
    Yu, Kunjie
    Yue, Caitong
    Liang, Jing
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 91
  • [42] Multi-objective Evolutionary Algorithm Based on Layer Strategy
    Zhao, Sen
    Hao, Zhifeng
    Liu, Shusen
    Xu, Weidi
    Huang, Han
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 546 - 553
  • [43] An Improved Adaptive Evolutionary Algorithm for Multi-objective Optimization
    Wang, Jianwei
    Zhang, Jianming
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 1494 - +
  • [44] An improved indicator-based two-archive algorithm for many-objective optimization problems
    Song, Weida
    Zhang, Shanxin
    Ge, Wenlong
    Wang, Wei
    COMPUTING, 2024, 106 (05) : 1395 - 1429
  • [45] Improved multi-objective optimization evolutionary algorithm on chaos
    Ding, Xue, 1600, Science and Engineering Research Support Society (09):
  • [46] A cloud differential evolutionary algorithm for constrained multi-objective optimization
    Bi, Xiaojun
    Liu, Guoan
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2012, 33 (08): : 1022 - 1031
  • [47] A partition-based constrained multi-objective evolutionary algorithm
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 66
  • [48] A constrained multi-objective evolutionary algorithm for ship maneuverability optimization
    Liu B.
    Bi X.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2020, 41 (09): : 1391 - 1397
  • [49] New Dynamic Multi-Objective Constrained Optimization Evolutionary Algorithm
    Liu, Chun-An
    Wang, Yuping
    Ren, Aihong
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2015, 32 (05)
  • [50] An evolutionary algorithm with directed weights for constrained multi-objective optimization
    Peng, Chaoda
    Liu, Hai-Lin
    Gu, Fangqing
    APPLIED SOFT COMPUTING, 2017, 60 : 613 - 622