Constrained multi-objective evolutionary algorithm with an improved two-archive strategy

被引:14
|
作者
Li, Wei [1 ]
Gong, Wenyin [1 ]
Ming, Fei [1 ]
Wang, Ling [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
关键词
Constrained multi-objective optimization; Evolutionary algorithm; Two archive; Fitness evaluation; Mating selection; OPTIMIZATION; DECOMPOSITION; PERFORMANCE;
D O I
10.1016/j.knosys.2022.108732
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solving constrained multi-objective optimization problems (CMOPs) obtains considerable attention in the evolutionary computation community. Various constrained multi-objective evolutionary algorithms (CMOEAs) have been developed for the CMOPs in the last few decades. Among the CMOEA techniques, two archive strategy is an effective approach, and enhancing the performance of C-TAEA based on two archive framework is a promising direction. This paper proposes an improved two-archive-based evolutionary algorithm, referred to as C-TAEA2. In C-TAEA2, a new fitness evaluation strategy for the convergence archive (CA) is presented to achieve better convergence. Additionally, a fitness evaluation method is proposed to evaluate solutions of the diversity archive (DA) to further promote diversity. Moreover, new update strategies are designed for both CA and DA to reduce the computational cost. Based on the new fitness evaluation strategies, a new mating selection strategy is also developed. Experiments on different benchmark CMOPs demonstrate that C-TAEA2 obtained better or highly competitive performance compared to other state-of-the-art CMOEAs. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A constrained multi-objective evolutionary algorithm based on decomposition with improved constrained dominance principle
    Gu, Qinghua
    Bai, Jiaming
    Li, Xuexian
    Xiong, Naixue
    Lu, Caiwu
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [22] A constrained multi-objective optimization algorithm based on coordinated strategy of archive and weight vectors
    Gu, Qinghua
    Liu, Ruchang
    Hui, Zegang
    Wang, Dan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 244
  • [23] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [24] Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm
    Ning, Weikang
    Guo, Baolong
    Yan, Yunyi
    Wu, Xianxiang
    Wu, Jinfu
    Zhao, Dan
    ENGINEERING OPTIMIZATION, 2017, 49 (10) : 1645 - 1664
  • [25] Incorporating aggregation trees in two-archive algorithm 2 for solving high dimensional multi-objective electromagnetic optimization
    Zou, Guoping
    Su, Xingyang
    An, Siguang
    Xiao, Shilong
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2023, 71 : S117 - S126
  • [26] RESEARCH ON A MULTI-OBJECTIVE CONSTRAINED OPTIMIZATION EVOLUTIONARY ALGORITHM
    Xiu, Jiapeng
    He, Qun
    Yang, Zhengqiu
    Liu, Chen
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 282 - 286
  • [27] An evolutionary algorithm for constrained multi-objective optimization problems
    Min, Hua-Qing
    Zhou, Yu-Ren
    Lu, Yan-Sheng
    Jiang, Jia-zhi
    APSCC: 2006 IEEE ASIA-PACIFIC CONFERENCE ON SERVICES COMPUTING, PROCEEDINGS, 2006, : 667 - +
  • [28] Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm
    Zhang, Yong
    Cheng, Shi
    Shi, Yuhui
    Gong, Dun-Wei
    Zhao, Xinchao
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 137 : 46 - 58
  • [29] Multi-objective and MGG evolutionary algorithm for constrained optimization
    Zhou, YR
    Li, YX
    He, J
    Kang, LS
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1 - 5
  • [30] Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective Optimization
    Wang, Handing
    Jiao, Licheng
    Yao, Xin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (04) : 524 - 541