GPU-accelerated parallel optimization for sparse regularization

被引:1
|
作者
Wang, Xingran [1 ]
Liu, Tianyi [1 ]
Minh Trinh-Hoang [1 ]
Pesavento, Marius [1 ]
机构
[1] Tech Univ Darmstadt, Commun Syst Grp, D-64283 Darmstadt, Germany
来源
2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM) | 2020年
关键词
block successive convex approximation; LASSO; SHRINKAGE;
D O I
10.1109/sam48682.2020.9104328
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We prove the concept that the block successive convex approximation algorithm can be configured in a flexible manner to adjust for implementations on modern parallel hardware architecture. A shuffle order update scheme and an all-close termination criterion are considered for efficient performance and convergence comparisons. Four different implementations are studied and compared. Simulation results on hardware show the condition of using shuffle order and selection of block numbers and implementations.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] GPU-accelerated Path Rendering
    Kilgard, Mark J.
    Bolz, Jeff
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (06):
  • [42] GPU-Accelerated Charge Mapping
    Sanaullah, Ahmed
    Mojumder, Saiful A.
    Lewis, Kathleen M.
    Herbordt, Martin C.
    2016 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2016,
  • [43] Correction to: GPU-accelerated scanning path optimization in particle cancer therapy
    Chao Wu
    Yue-Hu Pu
    Xiao Zhang
    NuclearScienceandTechniques, 2019, 30 (05) : 147 - 147
  • [44] GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm
    Willsch, Dennis
    Willsch, Madita
    Jin, Fengping
    Michielsen, Kristel
    De Raedt, Hans
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 278
  • [45] Correction to: GPU-accelerated scanning path optimization in particle cancer therapy
    Chao Wu
    Yue-Hu Pu
    Xiao Zhang
    Nuclear Science and Techniques, 2019, 30
  • [46] G-RMOS: GPU-accelerated Riemannian Metric Optimization on Surfaces
    Jo, Jeong Won
    Gahm, Jin Kyu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [47] Porting and scaling OpenACC applications on massively-parallel, GPU-accelerated supercomputers
    A. Hart
    R. Ansaloni
    A. Gray
    The European Physical Journal Special Topics, 2012, 210 : 5 - 16
  • [48] GPU-Accelerated Parallel Hierarchical Extreme Learning Machine on Flink for Big Data
    Chen, Cen
    Li, Kenli
    Ouyang, Aijia
    Tang, Zhuo
    Li, Keqin
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (10): : 2740 - 2753
  • [49] GPU-Accelerated Dynamic Graph Coloring
    Yang, Ying
    Gu, Yu
    Li, Chuanwen
    Wan, Changyi
    Yu, Ge
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 296 - 299
  • [50] GPU-Accelerated Static Timing Analysis
    Guo, Zizheng
    Huang, Tsung-Wei
    Lin, Yibo
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD), 2020,