Coherent Polariton Laser

被引:87
|
作者
Kim, Seonghoon [1 ]
Zhang, Bo [2 ]
Wang, Zhaorong [1 ]
Fischer, Julian [3 ]
Brodbeck, Sebastian [3 ]
Kamp, Martin [3 ]
Schneider, Christian [3 ]
Hoefling, Sven [3 ,4 ]
Deng, Hui [2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, 1301 Beal Ave, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA
[3] Univ Wurzburg, Tech Phys, D-97074 Wurzburg, Germany
[4] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
来源
PHYSICAL REVIEW X | 2016年 / 6卷 / 01期
基金
美国国家科学基金会;
关键词
SEMICONDUCTOR MICROCAVITY; EXCITON; CONDENSATION;
D O I
10.1103/PhysRevX.6.011026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Ultrafast tristable spin memory of a coherent polariton gas
    R. Cerna
    Y. Léger
    T.K. Paraïso
    M. Wouters
    F. Morier-Genoud
    M.T. Portella-Oberli
    B. Deveaud
    Nature Communications, 4
  • [32] Phase evolution of coherent light in a simple polariton model
    Wang Fa-Qiang
    Zhang Zhi-Ming
    CHINESE PHYSICS LETTERS, 2008, 25 (03) : 821 - 824
  • [33] Quantum coherent effects in cavity exciton polariton systems
    Giacobino, E
    Karr, JP
    Baas, A
    Messin, G
    Romanelli, M
    Bramati, A
    SOLID STATE COMMUNICATIONS, 2005, 134 (1-2) : 97 - 106
  • [34] Kagome Flatbands for Coherent Exciton-Polariton Lasing
    Harder, Tristan H.
    Egorov, Oleg A.
    Krause, Constantin
    Beierlein, Johannes
    Gagel, Philipp
    Emmerling, Monika
    Schneider, Christian
    Peschel, Ulf
    Hoefling, Sven
    Klembt, Sebastian
    ACS PHOTONICS, 2021, 8 (11) : 3193 - 3200
  • [35] Optical coherent manipulation of polariton modes and of their radiative decay
    Kudyk, I.
    Voss, T.
    Rueckmann, I.
    Gutowski, J.
    Schumacher, S.
    Jahnke, F.
    PHYSICAL REVIEW B, 2006, 73 (23)
  • [36] Coherent and incoherent aspects of polariton dynamics in semiconductor microcavities
    Takemura, N.
    Anderson, M. D.
    Biswas, S.
    Navadeh-Toupchi, M.
    Oberli, D. Y.
    Portella-Oberli, M. T.
    Deveaud, B.
    PHYSICAL REVIEW B, 2016, 94 (19)
  • [37] Coherent control of polariton parametric scattering in semiconductor microcavities
    Kundermann, S
    Saba, M
    Ciuti, C
    Guillet, T
    Oesterle, U
    Staehli, JL
    Deveaud, B
    PHYSICAL REVIEW LETTERS, 2003, 91 (10) : 107402 - 107402
  • [39] Spontaneous coherence buildup in a polariton laser
    Laussy, FP
    Malpuech, G
    Kavokin, A
    Bigenwald, P
    PHYSICAL REVIEW LETTERS, 2004, 93 (01) : 016402 - 1
  • [40] SPIN BEATS IN A MICROPILLAR POLARITON LASER
    Grundy, A. J. D.
    Maragkou, M.
    Wertz, E.
    Bloch, J.
    Lagoudakis, P. G.
    11TH INTERNATIONAL CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS11), 2010, 210