Kagome Flatbands for Coherent Exciton-Polariton Lasing

被引:13
|
作者
Harder, Tristan H. [2 ,3 ]
Egorov, Oleg A. [1 ]
Krause, Constantin [2 ,3 ]
Beierlein, Johannes [2 ,3 ]
Gagel, Philipp [2 ,3 ]
Emmerling, Monika [2 ,3 ]
Schneider, Christian [2 ,3 ,4 ]
Peschel, Ulf [1 ]
Hoefling, Sven [2 ,3 ]
Klembt, Sebastian [2 ,3 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Condensed Matter Theory & Solid State Opt, Abbe Ctr Photon, D-07743 Jena, Germany
[2] Univ Wurzburg, Tech Phys, Wilhelm Conrad Rontgen Res Ctr Complex Mat Syst, D-97074 Wurzburg, Germany
[3] Univ Wurzburg, Tech Phys, Wurzburg Dresden Cluster Excellence Ctqmat, D-97074 Wurzburg, Germany
[4] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26129 Oldenburg, Germany
基金
英国工程与自然科学研究理事会;
关键词
exciton-polariton; Kagome lattice; flatbands; polariton condensation; flatband lasing; coherence; HUBBARD-MODEL; GROUND-STATE; LATTICES; SINGLE;
D O I
10.1021/acsphotonics.1c00950
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Kagome lattices supporting Dirac cones and flatband dispersions are well-known as a highly frustrated, two-dimensional lattice system. Particularly, the flatbands therein are attracting continuous interest based on their link to topological order, correlations, and frustration. In this work, we realize coupled microcavity implementations of Kagome lattices hosting exciton-polariton quantum fluids of light. We demonstrate precise control over the dispersiveness of the flatband as well as selective condensation of exciton-polaritons into the flatband. Subsequently, we focus on the spatial and temporal coherence properties of the laserlike emission from these polariton condensates that are closely connected to the flatband nature of the system. Notably, we find a drastic increase in coherence time due to the localization of flatband condensates. Our work illustrates the outstanding suitability of the exciton-polariton system for detailed studies of flatband states as a platform for microlaser arrays in compact localized states, including strong interactions, topology, and nonlinearity.
引用
收藏
页码:3193 / 3200
页数:8
相关论文
共 50 条
  • [1] Exciton-polariton lasing in a microcavity
    Weihs, G
    Deng, H
    Huang, R
    Sugita, M
    Tassone, F
    Yamamoto, Y
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (10) : S386 - S394
  • [2] Plasmon Exciton-Polariton Lasing
    Ramezani, Mohammad
    Halpin, Alexei
    Feist, Johannes
    Fernandez-Dominguez, Antonio
    Rodriguez, Said Rahimzadeh-Kalaleh
    Garcia-Vidal, Francisco J.
    Gomez-Rivas, Jaime
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [3] Coherent exciton-polariton devices
    Fraser, Michael D.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2017, 32 (09)
  • [4] Kagome lattice from an exciton-polariton perspective
    Gulevich, D. R.
    Yudin, D.
    Iorsh, I. V.
    Shelykh, I. A.
    PHYSICAL REVIEW B, 2016, 94 (11)
  • [5] Crossover from photon to exciton-polariton lasing
    Kammann, Elena
    Ohadi, Hamid
    Maragkou, Maria
    Kavokin, Alexey V.
    Lagoudakis, Pavlos G.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [6] Radiative coupling and weak lasing of exciton-polariton condensates
    Aleiner, I. L.
    Altshuler, B. L.
    Rubo, Y. G.
    PHYSICAL REVIEW B, 2012, 85 (12)
  • [7] Frequency Combs with Weakly Lasing Exciton-Polariton Condensates
    Rayanov, K.
    Altshuler, B. L.
    Rubo, Y. G.
    Flach, S.
    PHYSICAL REVIEW LETTERS, 2015, 114 (19)
  • [8] Coherent Oscillations in an Exciton-Polariton Josephson Junction
    Lagoudakis, K. G.
    Pietka, B.
    Wouters, M.
    Andre, R.
    Deveaud-Pledran, B.
    PHYSICAL REVIEW LETTERS, 2010, 105 (12)
  • [9] Coherent merging of counterpropagating exciton-polariton superfluids
    Boulier, T.
    Pigeon, S.
    Cancellieri, E.
    Robin, P.
    Giacobino, E.
    Glorieux, Q.
    Bramati, A.
    PHYSICAL REVIEW B, 2018, 98 (02)
  • [10] Transition Between Exciton-Polariton and Coherent Photonic Lasing in All-Inorganic Perovskite Microcuboid
    Han, Qi
    Wang, Jun
    Lu, Jian
    Sun, Liaoxin
    Lyu, Feiyi
    Wang, Hu
    Chen, Zhanghai
    Wang, Zhongyang
    ACS PHOTONICS, 2020, 7 (02): : 454 - 462