Parallelizing and Optimizing LIP-Canny Using NVIDIA CUDA

被引:0
|
作者
Palomar, Rafael [1 ]
Palomares, Jose M. [1 ]
Castillo, Jose M. [1 ]
Olivares, Joaquin [1 ]
Gomez-Luna, Juan [1 ]
机构
[1] Univ Cordoba, Comp Architecture Area, Dept Comp Architecture Elect & Elect Technol, E-14071 Cordoba, Spain
关键词
MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Canny algorithm is a well known edge detector that is widely used in the previous processing stages in several algorithms related to computer vision. An alternative, the LIP-Canny algorithm, is based on a robust mathematical model closer to the human vision system, obtaining better results in terms of edge detection. In this work we describe LIP-Canny algorithm under the perspective from its parallelization and optimization by using the NVIDIA CUDA framework. Furthermore, we present; comparative results between an implementation of this algorithm using NVIDIA CUDA and the analogue using a C/C++ approach.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 50 条
  • [41] Titan: A Parallel Asynchronous Library for Multi-Agent and Soft-Body Robotics using NVIDIA CUDA
    Austin, Jacob
    Corrales-Fatou, Rafael
    Wyetzner, Sofia
    Lipson, Hod
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 7754 - 7760
  • [42] Hybrid of genetic algorithm and local search to solve MAX-SAT problem using nVidia CUDA framework
    Munawar, Asim
    Wahib, Mohamed
    Munetomo, Masaharu
    Akama, Kiyoshi
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2009, 10 (04) : 391 - 415
  • [43] Hybrid of genetic algorithm and local search to solve MAX-SAT problem using nVidia CUDA framework
    Asim Munawar
    Mohamed Wahib
    Masaharu Munetomo
    Kiyoshi Akama
    Genetic Programming and Evolvable Machines, 2009, 10 : 391 - 415
  • [44] Hypergraph Partitioning Implementation for Parallelizing Matrix-Vector Multiplication Using CUDA GPU-Based Parallel Computing
    Murni
    Bustamam, A.
    Ernastuti
    Handhika, T.
    Kerami, D.
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862
  • [45] Comparison Study of Particle Swarm Optimization and Differential Evolution Methods for Solving SAT Problem Using nVidia CUDA Framework
    Cokyilmaz, Mehmet
    Kalafat, Senai
    Isenkul, Erdem
    Tse, Savio S. H.
    Sertbas, Ahmet
    ICECCO'12: 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION, 2012, : 174 - 178
  • [46] Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA
    Komatitsch, Dimitri
    Michea, David
    Erlebacher, Gordon
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2009, 69 (05) : 451 - 460
  • [47] Optimizing data transmission and access of the incremental clustering algorithm using CUDA: A case study
    Chen, Chunlei
    Wang, Chengduan
    Hou, Jinkui
    Zhang, Peng
    Zhang, Yonghui
    Wang, Lei
    Dai, Jiangyan
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2018, 18 (04) : 989 - 1005
  • [48] Performance analysis and optimization strategies for a D3Q19 lattice Boltzmann kernel on nVIDIA GPUs using CUDA
    Habich, J.
    Zeiser, T.
    Hager, G.
    Wellein, G.
    ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (05) : 266 - 272
  • [49] Parallel computing of two-parameter bifurcation diagrams of an electric arc model with chaotic dynamics using Nvidia CUDA and OpenMP technologies
    Pala, Artur
    Machaczek, Marek
    PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (03): : 138 - 142
  • [50] Accelerating the Spatial Channel Model Enhanced (SCME) Using NVidia CUDA in 3GPP LTE-Advanced System Level Simulation
    Gao, Yuan
    Wang, Xianfeng
    Li, Yi
    Yu, Hongyi
    Gao, Shihai
    FUZZY SYSTEMS, KNOWLEDGE DISCOVERY AND NATURAL COMPUTATION SYMPOSIUM (FSKDNC 2013), 2013, : 174 - 181