Parallelizing and Optimizing LIP-Canny Using NVIDIA CUDA

被引:0
|
作者
Palomar, Rafael [1 ]
Palomares, Jose M. [1 ]
Castillo, Jose M. [1 ]
Olivares, Joaquin [1 ]
Gomez-Luna, Juan [1 ]
机构
[1] Univ Cordoba, Comp Architecture Area, Dept Comp Architecture Elect & Elect Technol, E-14071 Cordoba, Spain
关键词
MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Canny algorithm is a well known edge detector that is widely used in the previous processing stages in several algorithms related to computer vision. An alternative, the LIP-Canny algorithm, is based on a robust mathematical model closer to the human vision system, obtaining better results in terms of edge detection. In this work we describe LIP-Canny algorithm under the perspective from its parallelization and optimization by using the NVIDIA CUDA framework. Furthermore, we present; comparative results between an implementation of this algorithm using NVIDIA CUDA and the analogue using a C/C++ approach.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 50 条
  • [31] Implementation of a Lattice-Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology
    Riegel, E.
    Indinger, T.
    Adams, N. A.
    COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT, 2009, 23 (3-4): : 241 - 247
  • [32] Optimizing an APSP implementation for NVIDIA GPUs using kernel characterization criteria
    Hector Ortega-Arranz
    Yuri Torres
    Arturo Gonzalez-Escribano
    Diego R. Llanos
    The Journal of Supercomputing, 2014, 70 : 786 - 798
  • [33] Optimizing an APSP implementation for NVIDIA GPUs using kernel characterization criteria
    Ortega-Arranz, Hector
    Torres, Yuri
    Gonzalez-Escribano, Arturo
    Llanos, Diego R.
    JOURNAL OF SUPERCOMPUTING, 2014, 70 (02): : 786 - 798
  • [34] Low-Cost, High-Speed Computer Vision Using NVIDIA's CUDA Architecture
    Park, Seung In
    Ponce, Sean P.
    Huang, Jing
    Cao, Yong
    Quek, Francis
    2008 37TH IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, 2008, : 137 - 143
  • [35] Stream Processing of Multichannel EEG Data Using Parallel Computing Technology with NVIDIA CUDA Graphics Processors
    Grubov, V. V.
    Nedaivozov, V. O.
    TECHNICAL PHYSICS LETTERS, 2018, 44 (05) : 453 - 455
  • [36] Sparse Matrix-Vector Multiplication Optimizations based on Matrix Bandwidth Reduction using NVIDIA CUDA
    Xu, Shiming
    Lin, Hai Xiang
    Xue, Wei
    PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES 2010), 2010, : 609 - 614
  • [37] Stream Processing of Multichannel EEG Data Using Parallel Computing Technology with NVIDIA CUDA Graphics Processors
    V. V. Grubov
    V. O. Nedaivozov
    Technical Physics Letters, 2018, 44 : 453 - 455
  • [38] Optimizing a Semantic Comparator using CUDA-enabled Graphics Hardware
    Tripathy, Aalap
    Mohan, Suneil
    Mahapatra, Rabi
    FIFTH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2011), 2011, : 125 - 132
  • [39] 3D REAL-TIME PARALLEL VOLUME RENDERING USING NVIDIA CUDA FOR MEDICAL IMAGING
    Asavei, Victor
    Ionita, Vlad-Valentin
    Moldoveanu, Florica
    Moldoveanu, Alin
    ANNALS OF DAAAM FOR 2009 & PROCEEDINGS OF THE 20TH INTERNATIONAL DAAAM SYMPOSIUM, 2009, 20 : 1483 - 1484
  • [40] A Novel Architecture using NVIDIA CUDA to speed up Simulation of Multi-Path Fast Fading Channels
    Abdelrazek, Ahmed Fathy
    Kaschub, Matthias
    Blankenhorn, Christian
    Necker, Marc C.
    2009 IEEE VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, 2009, : 3014 - 3018