Resonant Neumann problems with indefinite and unbounded potential

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21413, Saudi Arabia
[3] Acad Romana, Simion Stoilow Inst Math, Bucharest 014700, Romania
关键词
Indefinite and unbounded potential; Reduction method; Resonance; Unique continuation property; Regularity; Critical groups; ELLIPTIC-EQUATIONS;
D O I
10.1016/j.aml.2014.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we report on some recent results obtained in our joint paper Papageorgiou and Radulescu (in press). We establish multiplicity properties for a class of semilinear Neumann problems driven by the Laplacian plus on unbounded and indefinite potential. The reaction is a Caratheodory function which exhibits linear growth near +/-infinity. We allow for resonance to occur with respect to a nonprincipal nonnegative eigenvalue. The approach combines critical point theory, Morse theory and the Lyapunov Schmidt method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 52
页数:4
相关论文
共 50 条
  • [41] Indefinite weight nonlinear problems with Neumann boundary conditions
    Sovrano, Elisa
    Zanolin, Fabio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 126 - 147
  • [42] Nontrivial solutions for Neumann problems with an indefinite linear part
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2666 - 2675
  • [43] Neumann problems resonant at zero and infinity
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (03) : 395 - 430
  • [44] On resonant Neumann problems: Multiplicity of solutions
    Papageorgiou, Nikolaos S.
    Santos Coelho Rodrigues, Ana Isabel
    Staicu, Vasile
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6487 - 6498
  • [45] Neumann problems resonant at zero and infinity
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    Annali di Matematica Pura ed Applicata, 2012, 191 : 395 - 430
  • [46] Uniqueness of positive solutions for Neumann problems in unbounded domain
    Hebei University of Engineering, Handan, Hebei 056038, China
    WSEAS Trans. Math., 2008, 11 (637-646):
  • [47] Super-critical Neumann problems on unbounded domains
    Alves, Claudianor O.
    Moameni, Abbas
    NONLINEARITY, 2020, 33 (09) : 4568 - 4589
  • [48] Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
  • [49] Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [50] Multiple Solutions to Neumann Problems with Indefinite Weight and Bounded Nonlinearities
    Boscaggin, Alberto
    Garrione, Maurizio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2016, 28 (01) : 167 - 187