Resonant Neumann problems with indefinite and unbounded potential

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21413, Saudi Arabia
[3] Acad Romana, Simion Stoilow Inst Math, Bucharest 014700, Romania
关键词
Indefinite and unbounded potential; Reduction method; Resonance; Unique continuation property; Regularity; Critical groups; ELLIPTIC-EQUATIONS;
D O I
10.1016/j.aml.2014.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we report on some recent results obtained in our joint paper Papageorgiou and Radulescu (in press). We establish multiplicity properties for a class of semilinear Neumann problems driven by the Laplacian plus on unbounded and indefinite potential. The reaction is a Caratheodory function which exhibits linear growth near +/-infinity. We allow for resonance to occur with respect to a nonprincipal nonnegative eigenvalue. The approach combines critical point theory, Morse theory and the Lyapunov Schmidt method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 52
页数:4
相关论文
共 50 条
  • [31] On resonant Neumann problems
    D. Motreanu
    V. V. Motreanu
    N. S. Papageorgiou
    Mathematische Annalen, 2012, 354 : 1117 - 1145
  • [32] Nonlinear resonant problems with an indefinite potential and concave boundary condition
    Papageorgiou, Nikolaos S.
    Scapellato, Andrea
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (51) : 1 - 16
  • [33] An infinity of nodal solutions for sup erlinear Robin problems with an indefinite and unbounded potential
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (04): : 251 - 266
  • [34] EIGENVALUES AND BIFURCATION FOR NEUMANN PROBLEMS WITH INDEFINITE WEIGHTS
    Calanchi, Marta
    Ruf, Bernhard
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, : 255 - 268
  • [35] Existence results for an indefinite unbounded perturbation of a resonant Schrodinger equation
    Tehrani, Hossein
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (01) : 1 - 28
  • [36] Principal eigenvalue in an unbounded domain with indefinite potential
    Liamidi Leadi
    Akila Yechoui
    Nonlinear Differential Equations and Applications NoDEA, 2010, 17 : 391 - 409
  • [37] Principal eigenvalue in an unbounded domain with indefinite potential
    Leadi, Liamidi
    Yechoui, Akila
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (04): : 391 - 409
  • [38] Homogenization of Neumann problems for unbounded integral functionals
    Carbone, L
    Esposito, AC
    De Arcangelis, R
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2B (02): : 463 - 491
  • [39] RESONANT ROBIN PROBLEMS DRIVEN BY THE p-LAPLACIAN PLUS AN INDEFINITE POTENTIAL
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 483 - 508
  • [40] POSITIVE SOLUTIONS FOR INDEFINITE INHOMOGENEOUS NEUMANN ELLIPTIC PROBLEMS
    IL'Yasov, Yavdat
    Runst, Thomas
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,