Theory of a spherical-quantum-rotors model: Low-temperature regime and finite-size scaling

被引:27
|
作者
Chamati, H
Pisanova, ES
Tonchev, NS
机构
[1] Bulgarian Acad Sci, Inst Solid State Phys, BU-1784 Sofia, Bulgaria
[2] Paisij Hilendarski Univ Plovdiv, Fac Phys, BG-4000 Plovdiv, Bulgaria
关键词
D O I
10.1103/PhysRevB.57.5798
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quantum-rotors model can be regarded as an effective model for the low-temperature behavior of the quantum Heisenberg antiferromagnets. Here, we consider a d-dimensional model in the spherical approximation confined to a general geometry of the form L(d-d')x infinity(d') x L-tau(z) (L-linear space size and L-tau-temporal size) and subjected to periodic boundary conditions. Due to the remarkable opportunity it offers for rigorous study of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phe nomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying the critical behavior of the model. For different dimensions 1<d<3 and 0 less than or equal to d less than or equal to d a detailed analysis, in terms of the special functions of classical mathematics, for the susceptibility and the equation of state is given. Particular attention is paid to the two-dimensional case.
引用
收藏
页码:5798 / 5811
页数:14
相关论文
共 50 条
  • [41] Finite-size scaling behavior in the O(4) model
    Jens Braun
    Bertram Klein
    The European Physical Journal C, 2009, 63 : 443 - 460
  • [42] Finite-size scaling behavior in the O(4) model
    Braun, Jens
    Klein, Bertram
    EUROPEAN PHYSICAL JOURNAL C, 2009, 63 (03): : 443 - 460
  • [43] Dynamic finite-size scaling after a quench at quantum transitions
    Pelissetto, Andrea
    Rossini, Davide
    Vicari, Ettore
    PHYSICAL REVIEW E, 2018, 97 (05)
  • [44] Finite-size scaling for correlations of quantum spin chains at criticality
    Koma, T
    Mizukoshi, N
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (3-4) : 661 - 726
  • [45] Modified finite-size scaling for anharmonic crystals with quantum fluctuations
    Pisanova, ES
    Tonchev, NS
    PHYSICA A, 1996, 227 (3-4): : 325 - 333
  • [46] Finite-size scaling of the Glauber model of critical dynamics
    Luscombe, JH
    Luban, M
    Reynolds, JP
    PHYSICAL REVIEW E, 1996, 53 (06): : 5852 - 5860
  • [47] A finite-size scaling study of a model of globular proteins
    Pagan, DL
    Gracheva, ME
    Gunton, JD
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (17): : 8292 - 8298
  • [48] FINITE-SIZE SCALING STUDY OF THE LAPLACIAN ROUGHENING MODEL
    JANKE, W
    KLEINERT, H
    PHYSICS LETTERS A, 1989, 140 (09) : 513 - 514
  • [49] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Merdan, Z.
    Bayirli, M.
    Gunen, A.
    Bulbul, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2031 - 2039
  • [50] Finite-size scaling in the quantum phase transition of the open-system Dicke model
    Konya, G.
    Nagy, D.
    Szirmai, G.
    Domokos, P.
    PHYSICAL REVIEW A, 2012, 86 (01):