Theory of a spherical-quantum-rotors model: Low-temperature regime and finite-size scaling

被引:27
|
作者
Chamati, H
Pisanova, ES
Tonchev, NS
机构
[1] Bulgarian Acad Sci, Inst Solid State Phys, BU-1784 Sofia, Bulgaria
[2] Paisij Hilendarski Univ Plovdiv, Fac Phys, BG-4000 Plovdiv, Bulgaria
关键词
D O I
10.1103/PhysRevB.57.5798
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quantum-rotors model can be regarded as an effective model for the low-temperature behavior of the quantum Heisenberg antiferromagnets. Here, we consider a d-dimensional model in the spherical approximation confined to a general geometry of the form L(d-d')x infinity(d') x L-tau(z) (L-linear space size and L-tau-temporal size) and subjected to periodic boundary conditions. Due to the remarkable opportunity it offers for rigorous study of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phe nomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying the critical behavior of the model. For different dimensions 1<d<3 and 0 less than or equal to d less than or equal to d a detailed analysis, in terms of the special functions of classical mathematics, for the susceptibility and the equation of state is given. Particular attention is paid to the two-dimensional case.
引用
收藏
页码:5798 / 5811
页数:14
相关论文
共 50 条
  • [21] Finite element method for finite-size scaling in quantum mechanics
    Moy, Winton
    Carignano, Marcelo A.
    Kais, Sabre
    JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (24): : 5448 - 5452
  • [23] Finite-size scaling of the Kuramoto model at criticality
    Park, Su-Chan
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2024, 110 (03)
  • [24] Finite-size scaling exponents in the Dicke model
    Vidal, J.
    Dusuel, S.
    EUROPHYSICS LETTERS, 2006, 74 (05): : 817 - 822
  • [25] UNIVERSAL AMPLITUDES IN FINITE-SIZE SCALING - THE ANTIPERIODIC 3D SPHERICAL MODEL
    HENKEL, M
    WESTON, RA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04): : L207 - L211
  • [26] AN INVESTIGATION OF FINITE-SIZE SCALING FOR SYSTEMS WITH LONG-RANGE INTERACTION - THE SPHERICAL MODEL
    BRANKOV, JG
    TONCHEV, NS
    JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) : 1431 - 1450
  • [27] Finite-size scaling Casimir force function: exact spherical-model results
    Danchev, Daniel
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53 (03):
  • [28] Finite-size scaling of Monte Carlo simulations for the fcc Ising antiferromagnet: Effects of the low-temperature phase degeneracy
    Stuebel, Ronja
    Janke, Wolfhard
    PHYSICAL REVIEW B, 2018, 98 (17)
  • [29] Effect of anisotropy on finite-size scaling in percolation theory
    Masihi, Mohsen
    King, Peter R.
    Nurafza, Peyman
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [30] FINITE-SIZE SCALING IN HAMILTONIAN FIELD-THEORY
    HAMER, CJ
    BARBER, MN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (05): : L169 - L174