Theory of a spherical-quantum-rotors model: Low-temperature regime and finite-size scaling

被引:27
|
作者
Chamati, H
Pisanova, ES
Tonchev, NS
机构
[1] Bulgarian Acad Sci, Inst Solid State Phys, BU-1784 Sofia, Bulgaria
[2] Paisij Hilendarski Univ Plovdiv, Fac Phys, BG-4000 Plovdiv, Bulgaria
关键词
D O I
10.1103/PhysRevB.57.5798
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quantum-rotors model can be regarded as an effective model for the low-temperature behavior of the quantum Heisenberg antiferromagnets. Here, we consider a d-dimensional model in the spherical approximation confined to a general geometry of the form L(d-d')x infinity(d') x L-tau(z) (L-linear space size and L-tau-temporal size) and subjected to periodic boundary conditions. Due to the remarkable opportunity it offers for rigorous study of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phe nomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying the critical behavior of the model. For different dimensions 1<d<3 and 0 less than or equal to d less than or equal to d a detailed analysis, in terms of the special functions of classical mathematics, for the susceptibility and the equation of state is given. Particular attention is paid to the two-dimensional case.
引用
收藏
页码:5798 / 5811
页数:14
相关论文
共 50 条
  • [1] UNIVERSALITY, LOW-TEMPERATURE PROPERTIES, AND FINITE-SIZE SCALING IN QUANTUM ANTIFERROMAGNETS
    FISHER, DS
    PHYSICAL REVIEW B, 1989, 39 (16): : 11783 - 11792
  • [2] ON THE FINITE-SIZE SCALING EQUATION FOR THE SPHERICAL MODEL
    BRANKOV, JG
    TONCHEV, NS
    JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) : 143 - 159
  • [3] Relaxation dynamics of the toric code in contact with a thermal reservoir: Finite-size scaling in a low-temperature regime
    Freeman, C. Daniel
    Herdman, C. M.
    Gorman, D. J.
    Whaley, K. B.
    PHYSICAL REVIEW B, 2014, 90 (13):
  • [4] Violation of finite-size scaling in the spherical limit of the ρ4 theory
    Chen, XS
    Dohm, V
    PHYSICA B, 2000, 284 : 45 - 46
  • [5] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [6] Finite-Size Shift of the Critical Temperature in the Spherical Model
    Chamati, H.
    Tonchev, N. S.
    Journal of Statistical Physics, 83 (5-6):
  • [7] Debye temperature of iron nanoparticles: Finite-size effects in the scaling regime
    Vasina, T.
    Bernard, J.
    Benoit, M.
    Calvo, F.
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [8] Finite-size shift of the critical temperature in the spherical model
    Chamati, H
    Tonchev, NS
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (5-6) : 1211 - 1218
  • [9] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2014, 89 (09)
  • [10] Finite-size scaling of the quasispecies model
    Campos, PRA
    Fontanari, JF
    PHYSICAL REVIEW E, 1998, 58 (02): : 2664 - 2667