Weight of a Link in a Shortest Path Tree and the Dedekind Eta Function

被引:0
|
作者
Van Mieghem, Piet [1 ]
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2600 GA Delft, Netherlands
关键词
link weights; shortest path; complete graph; Dedekind Eta function; RANDOM ASSIGNMENT PROBLEM; COMPLETE GRAPH; SPANNING TREE; LIMIT; SIZE;
D O I
10.1002/rsa.20299
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The weight of a randomly chosen link in the shortest path tree on the complete graph with exponential i.i.d. link weights is studied. The corresponding exact probability generating function and the asymptotic law are derived. As a remarkable coincidence, this asymptotic law is precisely the same as the distribution of the cost of one "job" in the random assignment problem. We also show that the asymptotic (scaled) maximum interattachment time to that shortest path tree, which is a uniform recursive tree, equals the square of the Dedekind Eta function, a central function in modular forms, elliptic functions, and the theory of partitions. (C) 2010 Wiley Periodicals, Inc. Random Struct. Alg., 36, 341-371, 2010
引用
收藏
页码:341 / 371
页数:31
相关论文
共 50 条
  • [31] The Dedekind eta function and D’Arcais-type polynomials
    Bernhard Heim
    Markus Neuhauser
    Research in the Mathematical Sciences, 2020, 7
  • [32] Records on the vanishing of Fourier coefficients of powers of the Dedekind eta function
    Heim, Bernhard
    Neuhauser, Markus
    Weisse, Alexander
    RESEARCH IN NUMBER THEORY, 2018, 4
  • [33] Dual-based link weight determination towards single shortest path solutions for OSPF networks
    Srivastava, S
    Agrawal, G
    Medhi, D
    PERFORMANCE CHALLENGES FOR EFFICIENT NEXT GENERATION NETWORKS, VOLS 6A-6C, 2005, 6A-6C : 829 - 838
  • [34] An Experimental Study of Weighted -Link Shortest Path Algorithms
    Daescu, Ovidiu
    Mitchell, Joseph S. B.
    Ntafos, Simeon
    Palmer, James D.
    Yap, Chee K.
    ALGORITHMIC FOUNDATION OF ROBOTICS VII, 2008, 47 : 187 - +
  • [35] Fault-local stabilization :: The shortest path tree
    Beauquier, J
    Hérault, T
    21ST IEEE SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, PROCEEDINGS, 2002, : 62 - 69
  • [36] Destination-driven shortest path tree algorithms
    Zhang, BX
    Mouftah, HT
    JOURNAL OF HIGH SPEED NETWORKS, 2006, 15 (02) : 123 - 130
  • [37] The minimum cost shortest-path tree game
    Fernandez, F. R.
    Puerto, J.
    ANNALS OF OPERATIONS RESEARCH, 2012, 199 (01) : 23 - 32
  • [38] A destination-driven shortest path tree algorithm
    Zhang, BX
    Mouftah, HT
    2002 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2002, : 2258 - 2262
  • [39] New dynamic algorithms for shortest path tree computation
    Narváez, P
    Siu, KY
    Tzeng, HY
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2000, 8 (06) : 734 - 746
  • [40] Tree-based shortest path routing algorithm
    Long, YH
    Ho, TK
    Rad, AB
    Lam, SPS
    INTERNET ROUTING AND QUALITY OF SERVICE, 1998, 3529 : 354 - 364