Weight of a Link in a Shortest Path Tree and the Dedekind Eta Function

被引:0
|
作者
Van Mieghem, Piet [1 ]
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2600 GA Delft, Netherlands
关键词
link weights; shortest path; complete graph; Dedekind Eta function; RANDOM ASSIGNMENT PROBLEM; COMPLETE GRAPH; SPANNING TREE; LIMIT; SIZE;
D O I
10.1002/rsa.20299
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The weight of a randomly chosen link in the shortest path tree on the complete graph with exponential i.i.d. link weights is studied. The corresponding exact probability generating function and the asymptotic law are derived. As a remarkable coincidence, this asymptotic law is precisely the same as the distribution of the cost of one "job" in the random assignment problem. We also show that the asymptotic (scaled) maximum interattachment time to that shortest path tree, which is a uniform recursive tree, equals the square of the Dedekind Eta function, a central function in modular forms, elliptic functions, and the theory of partitions. (C) 2010 Wiley Periodicals, Inc. Random Struct. Alg., 36, 341-371, 2010
引用
收藏
页码:341 / 371
页数:31
相关论文
共 50 条
  • [21] Certain Modular Functions Similar to the Dedekind eta Function
    Taro Horie
    Naruo Kanou
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2002, 72 : 89 - 117
  • [22] Link Distance and Shortest Path Problems in the Plane
    Cook, Atlas F.
    Wenk, Carola
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS, 2009, 5564 : 140 - 151
  • [23] Link distance and shortest path problems in the plane
    Cook, Atlas F.
    Wenk, Carola
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2011, 44 (08): : 442 - 455
  • [24] Dual algorithms for the shortest path tree problem
    Pallottino, S
    Scutella, MG
    NETWORKS, 1997, 29 (02) : 125 - 133
  • [25] Dynamic update of shortest path tree in OSPF
    Xiao, B
    Cao, JN
    Zhuge, QF
    Shao, ZL
    Sha, EHM
    I-SPAN 2004: 7TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND NETWORKS, PROCEEDINGS, 2004, : 18 - 23
  • [26] Shortest Path Tree Computation in Dynamic Graphs
    Chan, Edward P. F.
    Yang, Yaya
    IEEE TRANSACTIONS ON COMPUTERS, 2009, 58 (04) : 541 - 557
  • [27] Stackelberg Shortest Path Tree Game, Revisited)
    Cabello, Sergio
    SOR'13 PROCEEDINGS: THE 12TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2013, : 123 - 128
  • [28] LP formulations of the shortest path tree problem
    Krarup J.
    Rørbech M.N.
    4OR, 2004, 2 (4) : 259 - 274
  • [29] DEDEKIND ETA-FUNCTION AND INDEFINITE QUADRATIC-FORMS
    SHEINMAN, OK
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1985, 19 (03) : 232 - 234
  • [30] The Dedekind eta function and D'Arcais-type polynomials
    Heim, Bernhard
    Neuhauser, Markus
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2020, 7 (01)