On the Riesz means of -II

被引:0
|
作者
Sankaranarayanan, Ayyadurai [1 ]
Singh, Saurabh Kumar [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
Euler-totient function; Generating functions; Riemann zeta-function; Mean-value theorems; ERROR TERM; MOMENTS; LANDAU; ZETA;
D O I
10.1007/s00013-014-0691-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi(n) denote the Euler-totient function. We study the error term of the general k-th Riesz mean of the arithmetical function n f( n) for any positive integer k >= 1, namely the error term E-k(x) where 1/k! Sigma(n <= x) n/phi(n) (1 - n/x)(k) = M-k(x) + E-k(x). The upper bound for vertical bar E-k(x)vertical bar established here thus improves the earlier known upper bounds for all integers k >= 1.
引用
收藏
页码:329 / 343
页数:15
相关论文
共 50 条