On the Riesz means of -II

被引:0
|
作者
Sankaranarayanan, Ayyadurai [1 ]
Singh, Saurabh Kumar [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
Euler-totient function; Generating functions; Riemann zeta-function; Mean-value theorems; ERROR TERM; MOMENTS; LANDAU; ZETA;
D O I
10.1007/s00013-014-0691-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi(n) denote the Euler-totient function. We study the error term of the general k-th Riesz mean of the arithmetical function n f( n) for any positive integer k >= 1, namely the error term E-k(x) where 1/k! Sigma(n <= x) n/phi(n) (1 - n/x)(k) = M-k(x) + E-k(x). The upper bound for vertical bar E-k(x)vertical bar established here thus improves the earlier known upper bounds for all integers k >= 1.
引用
收藏
页码:329 / 343
页数:15
相关论文
共 50 条
  • [31] On Fejer and Bochner-Riesz Means
    Z. Ditzian
    Journal of Fourier Analysis and Applications, 2005, 11 : 489 - 496
  • [32] On the Riesz means of n/φ(n) III
    Sankaranarayanan, Ayyadurai
    Singh, Saurabh Kumar
    ACTA ARITHMETICA, 2015, 170 (03) : 275 - 286
  • [33] Bilinear Riesz means on the Heisenberg group
    Heping Liu
    Min Wang
    Science China(Mathematics), 2019, 62 (12) : 2535 - 2556
  • [34] Riesz means of certain arithmetic functions
    Duke, William
    Ha Nam Nguyen
    JOURNAL OF NUMBER THEORY, 2020, 210 : 132 - 141
  • [35] INCLUSION RELATIONS FOR RIESZ TYPICAL MEANS
    JAKIMOVSKI, A
    TZIMBALA.J
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 72 (NOV): : 417 - +
  • [36] Riesz Means on Graphs and Discrete Groups
    Anestis Fotiadis
    Athanasios G. Georgiadis
    Potential Analysis, 2013, 38 : 21 - 30
  • [37] ON DISCONTINUOUS RIESZ MEANS OF ORDER 2
    KUTTNER, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1965, 40 (158P): : 332 - &
  • [38] ON THE EQUICONVERGENCE OF THE RIESZ MEANS WITH EXACT ORDER
    LOI, NH
    ACTA MATHEMATICA HUNGARICA, 1991, 58 (1-2) : 55 - 61
  • [39] THE BOREL PROPERTY FOR SIMPLE RIESZ MEANS
    LOSERT, V
    MONATSHEFTE FUR MATHEMATIK, 1986, 102 (03): : 217 - 226
  • [40] RIESZ AND VALIRON MEANS AND FRACTIONAL MOMENTS
    BINGHAM, NH
    TENENBAUM, G
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 99 : 143 - 149