Global converse Lyapunov theorems for infinite-dimensional systems

被引:0
|
作者
Mironchenko, Andrii [1 ]
Wirth, Fabian [1 ]
机构
[1] Univ Passau, Fac Comp Sci & Math, Innstr 33, D-94032 Passau, Germany
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 18期
关键词
non linear control systems; infinite-dimensional systems; input-to-statestability; Lyapunov methods; TO-STATE STABILITY; SMALL-GAIN THEOREM; NONLINEAR CONTROL; ISS;
D O I
10.1016/j.ifacol.2016.10.280
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that existence of a non-coercive Lyapunov function is sufficient for uniform global asymptotic stability (UGAS) of infinite-dimensional systems with external disturbances provided an additional mild assumption is fulfilled. For UGAS infinite-dimensional systems with external disturbances we derive a novel integral construction of non-coercive Lipschitz continuous Lyapunov functions. Finally, converse Lyapunov theorems are used in order to prove Lyapunov characterizations of input-to-state stability of infinite-dimensional systems. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:897 / 902
页数:6
相关论文
共 50 条
  • [31] THE LYAPUNOV EXPONENT FOR PRODUCTS OF INFINITE-DIMENSIONAL RANDOM MATRICES
    DARLING, RWR
    LECTURE NOTES IN MATHEMATICS, 1991, 1486 : 206 - 215
  • [32] Other proof of the converse Lyapunov theorems of hybrid dynamical systems
    Gao Rui
    Wang Lei
    Wang Yu-zhen
    Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 121 - 125
  • [33] Converse Lyapunov theorems for nonautonomous discrete-time systems
    Zhijun Z.
    Journal of Mathematical Sciences, 2009, 161 (2) : 337 - 343
  • [34] Converse Lyapunov theorems and robust asymptotic stability for hybrid systems
    Cai, CH
    Teel, AR
    Goebel, R
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 12 - 17
  • [35] DUALITY THEOREMS ON CONTROL AND OBSERVATION OF DISCRETE-TIME INFINITE-DIMENSIONAL SYSTEMS
    OLBROT, AW
    SOSNOWSKI, A
    MATHEMATICAL SYSTEMS THEORY, 1981, 14 (02): : 173 - 187
  • [36] PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS
    HALE, JK
    WALTMAN, P
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) : 388 - 395
  • [37] APPROXIMATION OF INFINITE-DIMENSIONAL SYSTEMS
    GU, GX
    KHARGONEKAR, PP
    LEE, EB
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (06) : 610 - 618
  • [38] Zeros of infinite-dimensional systems
    Zwart, H.
    Hof, M.B.
    IMA Journal of Mathematical Control and Information, 1997, 14 (01): : 85 - 94
  • [39] REPRESENTATIONS OF INFINITE-DIMENSIONAL SYSTEMS
    CURTAIN, RF
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1989, 135 : 101 - 128
  • [40] Stability of Infinite-Dimensional Systems
    I. G. Ismailov
    Automation and Remote Control, 2002, 63 : 1565 - 1572