Global converse Lyapunov theorems for infinite-dimensional systems

被引:0
|
作者
Mironchenko, Andrii [1 ]
Wirth, Fabian [1 ]
机构
[1] Univ Passau, Fac Comp Sci & Math, Innstr 33, D-94032 Passau, Germany
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 18期
关键词
non linear control systems; infinite-dimensional systems; input-to-statestability; Lyapunov methods; TO-STATE STABILITY; SMALL-GAIN THEOREM; NONLINEAR CONTROL; ISS;
D O I
10.1016/j.ifacol.2016.10.280
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that existence of a non-coercive Lyapunov function is sufficient for uniform global asymptotic stability (UGAS) of infinite-dimensional systems with external disturbances provided an additional mild assumption is fulfilled. For UGAS infinite-dimensional systems with external disturbances we derive a novel integral construction of non-coercive Lipschitz continuous Lyapunov functions. Finally, converse Lyapunov theorems are used in order to prove Lyapunov characterizations of input-to-state stability of infinite-dimensional systems. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:897 / 902
页数:6
相关论文
共 50 条