Global converse Lyapunov theorems for infinite-dimensional systems

被引:0
|
作者
Mironchenko, Andrii [1 ]
Wirth, Fabian [1 ]
机构
[1] Univ Passau, Fac Comp Sci & Math, Innstr 33, D-94032 Passau, Germany
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 18期
关键词
non linear control systems; infinite-dimensional systems; input-to-statestability; Lyapunov methods; TO-STATE STABILITY; SMALL-GAIN THEOREM; NONLINEAR CONTROL; ISS;
D O I
10.1016/j.ifacol.2016.10.280
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that existence of a non-coercive Lyapunov function is sufficient for uniform global asymptotic stability (UGAS) of infinite-dimensional systems with external disturbances provided an additional mild assumption is fulfilled. For UGAS infinite-dimensional systems with external disturbances we derive a novel integral construction of non-coercive Lipschitz continuous Lyapunov functions. Finally, converse Lyapunov theorems are used in order to prove Lyapunov characterizations of input-to-state stability of infinite-dimensional systems. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:897 / 902
页数:6
相关论文
共 50 条
  • [1] Converse Lyapunov theorems for infinite-dimensional nonlinear switching systems
    Haidar, Ihab
    Chitour, Yacine
    Mason, Paolo
    Sigalotti, Mario
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 587 - 592
  • [2] Lyapunov functions for infinite-dimensional systems
    Kocan, M
    Soravia, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 192 (02) : 342 - 363
  • [3] Observing Lyapunov Exponents of Infinite-Dimensional Dynamical Systems
    William Ott
    Mauricio A. Rivas
    James West
    Journal of Statistical Physics, 2015, 161 : 1098 - 1111
  • [4] Observing Lyapunov Exponents of Infinite-Dimensional Dynamical Systems
    Ott, William
    Rivas, Mauricio A.
    West, James
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (05) : 1098 - 1111
  • [5] LYAPUNOV EQUATION FOR INFINITE-DIMENSIONAL DISCRETE BILINEAR-SYSTEMS
    COSTA, OLV
    KUBRUSLY, CS
    SYSTEMS & CONTROL LETTERS, 1991, 17 (01) : 71 - 77
  • [6] Global Attractors in Impulsive Infinite-Dimensional Systems
    Kapustyan, O. V.
    Perestyuk, M. O.
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 68 (04) : 583 - 597
  • [7] LMI parametrization of Lyapunov Functions for Infinite-Dimensional Systems: A Framework
    Peet, Matthew M.
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 359 - 366
  • [8] Global Attractors in Impulsive Infinite-Dimensional Systems
    O. V. Kapustyan
    M. O. Perestyuk
    Ukrainian Mathematical Journal, 2016, 68 : 583 - 597
  • [9] GLOBAL ADAPTIVE STABILIZATION OF INFINITE-DIMENSIONAL SYSTEMS
    KOBAYASHI, T
    SYSTEMS & CONTROL LETTERS, 1987, 9 (03) : 215 - 223
  • [10] Infinite-dimensional utility representation theorems
    Mehta, GB
    Monteiro, PK
    ECONOMICS LETTERS, 1996, 53 (02) : 169 - 173