RF Characterization of 3D Printed Flexible Materials - NinjaFlex Filaments

被引:0
|
作者
Bahr, Ryan [1 ]
Le, Taoran [1 ]
Tentzeris, Manos M. [1 ]
Moscato, Stefano [2 ]
Pasian, Marco [2 ]
Bozzi, Maurizio [2 ]
Perregrini, Luca [2 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Univ Pavia, Dept Elect Comp & Biomed Engn, I-27100 Pavia, Italy
来源
2015 45TH EUROPEAN MICROWAVE CONFERENCE (EUMC) | 2015年
关键词
3D printing; materiel characterization; UHF band; stretchable; patch antenna; NinjaFlex; flexible electronics; RF;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The additive manufacturing technique of 3D printing has become increasingly popular for designs that have been previously unachievable due to cost and design complexity. Due to the special mechanical properties of NinjaFlex [1], there is great potential for its use in the 3D printed fabrications of numerous RF applications, such as strain sensors and wearable RF devices. This paper investigates for the first time the RF properties of various NinjaFlex filaments of varying densities utilizing the ring resonator approach, while these properties are verified on a 3D printed patch antenna topology.
引用
收藏
页码:742 / 745
页数:4
相关论文
共 50 条
  • [31] Exploitation of Forming of the 3D Printed Materials
    Mantyjarvi, Kari
    Iso-Junno, Terho
    Mustakangas, Aappo
    Jokelainen, Tero
    Keskitalo, Markku
    Jarvenpaa, Antti
    PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2019), 2019, 2113
  • [32] Mechanical Testing of 3D Printed Materials
    Wagner, Nicole
    Handayani, Dika
    Okhuysen, Victor
    Garibaldi, Kyle
    Seitz, Michael
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 153 - 163
  • [33] Flexible Patterns for Soft 3D Printed Fabrications
    Chynybekova, Kanygul
    Choi, Soo-Mi
    SYMMETRY-BASEL, 2019, 11 (11):
  • [34] 3D PRINTED SEGMENTED FLEXIBLE PNEUMATIC ACTUATOR
    Gonzalez, David
    Garcia, Jose
    Newell, Brittany
    PREOCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2019, 2020,
  • [35] ADDITIVE FORMWORK 3D PRINTED FLEXIBLE FORMWORK
    Peters, Brian
    ACADIA 2014: DESIGN AGENCY, 2014, : 517 - 522
  • [36] 3D printed microstructures for flexible electronic devices
    Liu, Yiming
    Xu, Yeshou
    Avila, Raudel
    Liu, Chao
    Xie, Zhaoqian
    Wang, Lidai
    Yu, Xinge
    NANOTECHNOLOGY, 2019, 30 (41)
  • [37] 3D Printed Flexible Integrated LC Circuits
    Bao, C.
    Kiml, W. S.
    2019 IEEE INTERNATIONAL FLEXIBLE ELECTRONICS TECHNOLOGY CONFERENCE (IEEE IFETC 2019), 2019,
  • [38] PRODUCTION OF 3D PRINTED FLEXIBLE STRAIN SENSORS
    Mamer, Trevor
    Garcia, Jose
    Leon-Salas, Walter D.
    Voyles, Richard
    Nawrocki, Robert A.
    Yokota, Tomoyuki
    Someya, Takao
    Ducharne, Benjamin
    Newell, Brittany
    PROCEEDINGS OF THE ASME 2020 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS (SMASIS2020), 2020,
  • [39] 3D PRINTED FLEXIBLE GRIPPER WITH CAPACITANCE SENSING
    Moreno-Rueda, David
    Maynard, Cole
    Hernandez, Julio
    Tallman, Tyler
    Garcia, Jose
    Newell, Brittany
    PROCEEDINGS OF ASME 2023 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, SMASIS2023, 2023,
  • [40] 3D PRINTED FLEXIBLE TACTILE SENSOR FOR REHABILITATION
    Moreno-Rueda, David
    Narvaez, Diana
    McCarthy, Evelyn
    McCormack, Liam
    Newell, Brittany
    PROCEEDINGS OF ASME 2024 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, SMASIS 2024, 2024,