A Review of Feature Extraction Software for Microarray Gene Expression Data

被引:12
|
作者
Tan, Ching Siang [1 ]
Ting, Wai Soon [1 ]
Mohamad, Mohd Saberi [1 ]
Chan, Weng Howe [1 ]
Deris, Safaai [1 ]
Shah, Zuraini Ali [1 ]
机构
[1] Univ Teknol Malaysia, Fac Comp, Artificial Intelligence & Bioinformat Res Grp, Skudai 81310, Johor, Malaysia
关键词
PARTIAL LEAST-SQUARES; MULTIVARIATE-ANALYSIS; COMPONENT ANALYSIS; R-PACKAGE; CLASSIFICATION; SELECTION; PREDICTION; CANCER;
D O I
10.1155/2014/213656
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Impact of Feature Selection on Support Vector Machine Using Microarray Gene Expression Data
    Wahid, Choudhury Muhammad Mufassil
    Ali, A. B. M. Shawkat
    Tickle, Kevin
    2009 SECOND INTERNATIONAL CONFERENCE ON MACHINE VISION, PROCEEDINGS, ( ICMV 2009), 2009, : 189 - 193
  • [32] Unsupervised Feature Selection for Microarray Gene Expression Data Based on Discriminative Structure Learning
    Ye, Xiucai
    Sakurai, Tetsuya
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (06) : 725 - 741
  • [33] Analysis of Microarray Gene Expression Data Using Various Feature Selection and Classification Techniques
    Singh, W. Jai
    Kavitha, R. K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 105 - 108
  • [34] A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data
    Wang, Hong
    Jing, Xingjian
    Niu, Ben
    KNOWLEDGE-BASED SYSTEMS, 2017, 126 : 8 - 19
  • [35] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [36] Visualization of microarray gene expression data
    Prasad, Tangirala Venkateswara
    Ahson, Syed Ismail
    BIOINFORMATION, 2006, 1 (04) : 141 - 145
  • [37] Analyzing microarray gene expression data
    Lewin, A
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 : 876 - 877
  • [38] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108
  • [39] Review on Feature Selection Methods for Gene Expression Data Classification
    Almutiri, Talal
    Saeed, Faisal
    EMERGING TRENDS IN INTELLIGENT COMPUTING AND INFORMATICS: DATA SCIENCE, INTELLIGENT INFORMATION SYSTEMS AND SMART COMPUTING, 2020, 1073 : 24 - 34
  • [40] Feature Selection of Gene Expression Data for Cancer Classification: A Review
    Singh, Rabindra Kumar
    Sivabalakrishnan, M.
    BIG DATA, CLOUD AND COMPUTING CHALLENGES, 2015, 50 : 52 - 57