A Review of Feature Extraction Software for Microarray Gene Expression Data

被引:12
|
作者
Tan, Ching Siang [1 ]
Ting, Wai Soon [1 ]
Mohamad, Mohd Saberi [1 ]
Chan, Weng Howe [1 ]
Deris, Safaai [1 ]
Shah, Zuraini Ali [1 ]
机构
[1] Univ Teknol Malaysia, Fac Comp, Artificial Intelligence & Bioinformat Res Grp, Skudai 81310, Johor, Malaysia
关键词
PARTIAL LEAST-SQUARES; MULTIVARIATE-ANALYSIS; COMPONENT ANALYSIS; R-PACKAGE; CLASSIFICATION; SELECTION; PREDICTION; CANCER;
D O I
10.1155/2014/213656
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A Review on Feature Selection Techniques for Gene Expression Data
    Vanjimalar, S.
    Ramyachitra, D.
    Manikandan, P.
    2018 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC 2018), 2018, : 26 - 29
  • [22] Systematic benchmarking of microarray data feature extraction and classification
    Zrang, Jing
    Jiang, Tianzi
    Liu, Bing
    Jiang, Xingpeng
    Zhao, Huizhi
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (05) : 803 - 811
  • [23] An integrated approach to the extraction, storage, processing and analysis of microarray gene expression data
    Andreas D. Baxevanis
    Izabela Makalowska
    Kenneth Trout
    Qien Zhou
    Zheng-Zheng Zhou
    Jaime Stein
    Edward R. Dougherty
    Paul S. Meltzer
    Yidong Chen
    Michael L. Bittner
    Jeffrey M. Trent
    Nature Genetics, 2001, 27 (Suppl 4) : 42 - 42
  • [24] A review of independent component analysis application to microarray gene expression data
    Kong, Wei
    Vanderburg, Charles R.
    Gunshin, Hiromi
    Rogers, Jack T.
    Huang, Xudong
    BIOTECHNIQUES, 2008, 45 (05) : 501 - +
  • [25] DWT based feature extraction of gene expression data for tissue classification
    Dong, XY
    Sun, GM
    Xu, GD
    PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND COMPUTATIONAL INTELLIGENCE, 2004, : 37 - 42
  • [26] Comparison of different feature extraction methods on classification of gene expression data
    Argunash, Ali Oezguer
    Akan, Batu
    Ercil, Aytuel
    Sezerman, Ugur
    2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 921 - +
  • [27] A Review on Missing Value Imputation Algorithms for Microarray Gene Expression Data
    Moorthy, Kohbalan
    Mohamad, Mohd Saberi
    Deris, Safaai
    CURRENT BIOINFORMATICS, 2014, 9 (01) : 18 - 22
  • [28] A Survey on Hybrid Feature Selection Methods in Microarray Gene Expression Data for Cancer Classification
    Almugren, Nada
    Alshamlan, Hala
    IEEE ACCESS, 2019, 7 : 78533 - 78548
  • [29] Improving feature subset selection using a genetic algorithm for microarray gene expression data
    Tan, Feng
    Fu, Xuezheng
    Zhang, Yanqing
    Bourgeois, Anu G.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2514 - 2519
  • [30] Hybrid feature selection using micro genetic algorithm on microarray gene expression data
    Pragadeesh, C.
    Jeyaraj, Rohana
    Siranjeevi, K.
    Abishek, R.
    Jeyakumar, G.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (03) : 2241 - 2246