Prediction of the CATS benchmark using a business forecasting approach to multilayer perceptron modelling

被引:0
|
作者
Crone, SF [1 ]
Kausch, H [1 ]
Pressmar, D [1 ]
机构
[1] Univ Lancaster, Dept Management Sci, Lancaster, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various heuristic approaches have been proposed to limit design complexity and computing time in artificial neural network modelling and parameterisation for time series prediction, with no single approach demonstrating robust superiority on arbitrary datasets. In business forecasting competitions, simple methods robustly outperform complex methods and expert teams. To reflect this, we follow a simple neural network modelling approach, utilising linear autoregressive lags and an extensive enumeration of important modelling parameters, effectively modelling a miniature forecasting competition. Experimental predictions are computed for the CATS benchmark using a standard multilayer perceptron to predict 100 missing values in five datasets.
引用
收藏
页码:2783 / 2788
页数:6
相关论文
共 50 条
  • [41] Forecasting hyponatremia in hospitalized patients using multilayer perceptron and multivariate linear regression techniques
    Theerthagiri, Prasannavenkatesan
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (16):
  • [42] Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron
    R. Muhammad Ehsan
    Sishaj P. Simon
    P. R. Venkateswaran
    Neural Computing and Applications, 2017, 28 : 3981 - 3992
  • [43] Different Forecasting Horizons Based Performance Analysis of Electricity Load Forecasting Using Multilayer Perceptron Neural Network
    Madhiarasan, Manogaran
    Louzazni, Mohamed
    FORECASTING, 2021, 3 (04): : 804 - 838
  • [44] Multilayer perceptron modelling of geopolymer composite incorporating fly ash and GGBS for prediction of compressive strength
    Gupta, Priyanka
    Gupta, Nakul
    Saxena, Kuldeep K.
    Goyal, Sudhir
    ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES, 2022, 8 : 1441 - 1455
  • [45] MULTILAYER PERCEPTRON WEIGHT OPTIMIZATION USING BEE SWARM ALGORITHM FOR MOBILITY PREDICTION
    Ananthi, J.
    Ranganathan, V.
    IIOAB JOURNAL, 2016, 7 (09) : 47 - 63
  • [46] Time Series Prediction with Multilayer Perceptron (MLP): A New Generalized Error Based Approach
    Shiblee, Md.
    Kalra, P. K.
    Chandra, B.
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT II, 2009, 5507 : 37 - +
  • [47] A Multilayer Perceptron Neural Network-Based Spectrum Prediction Approach with Gray Decision
    Ge, Jincheng
    Xu, Yuhua
    Liu, Dianxiong
    Kong, Lijun
    Chen, Xueqiang
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2395 - 2404
  • [48] Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS
    Nosratabadi, Saeed
    Ardabili, Sina
    Lakner, Zoltan
    Mako, Csaba
    Mosavi, Amir
    AGRICULTURE-BASEL, 2021, 11 (05):
  • [49] Prediction of the indoor airflow temperature distribution with a heat source using a multilayer perceptron
    Kim, Sun Jae
    Pandey, Sudhanshu
    Ha, Man Yeong
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (02) : 1011 - 1025
  • [50] Landslide Occurrence Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron
    Al-Batah, Mohammad Subhi
    Alkhasawneh, Mutasem Sh.
    Tay, Lea Tien
    Ngah, Umi Kalthum
    Lateh, Habibah Hj
    Isa, Nor Ashidi Mat
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015