Prediction of the CATS benchmark using a business forecasting approach to multilayer perceptron modelling

被引:0
|
作者
Crone, SF [1 ]
Kausch, H [1 ]
Pressmar, D [1 ]
机构
[1] Univ Lancaster, Dept Management Sci, Lancaster, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various heuristic approaches have been proposed to limit design complexity and computing time in artificial neural network modelling and parameterisation for time series prediction, with no single approach demonstrating robust superiority on arbitrary datasets. In business forecasting competitions, simple methods robustly outperform complex methods and expert teams. To reflect this, we follow a simple neural network modelling approach, utilising linear autoregressive lags and an extensive enumeration of important modelling parameters, effectively modelling a miniature forecasting competition. Experimental predictions are computed for the CATS benchmark using a standard multilayer perceptron to predict 100 missing values in five datasets.
引用
收藏
页码:2783 / 2788
页数:6
相关论文
共 50 条
  • [31] PredAmyl-MLP: Prediction of Amyloid Proteins Using Multilayer Perceptron
    Li, Yanjuan
    Zhang, Zitong
    Teng, Zhixia
    Liu, Xiaoyan
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020
  • [32] Prediction of nanofluid viscosity using multilayer perceptron and Gaussian process regression
    Kumar, P. C. Mukesh
    Kavitha, R.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 144 (04) : 1151 - 1160
  • [33] Prediction of the response under impact of steel armours using a multilayer perceptron
    Garcia-Crespo, A.
    Ruiz-Mezcua, B.
    Fernandez-Fdz, D.
    Zaera, R.
    NEURAL COMPUTING & APPLICATIONS, 2007, 16 (02): : 147 - 154
  • [34] Modeling Life Insurance Business Growth in Thailand using SARIMAX and Multilayer Perceptron
    Phaphan, Wikanda
    Jitpattanakul, Anuchit
    Huadsri, Supika
    Budsaba, Kamon
    Phapan, Wiyada
    Mekruksavanich, Sakorn
    2024 16th International Conference on Computer and Automation Engineering, ICCAE 2024, 2024, : 146 - 151
  • [35] Prediction of mortality in stroke patients using multilayer perceptron neural networks
    Sut, Necdet
    Celik, Yahya
    TURKISH JOURNAL OF MEDICAL SCIENCES, 2012, 42 (05) : 886 - 893
  • [36] Wind power prediction using recurrent multilayer Perceptron neural networks
    Li, SH
    2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 2325 - 2330
  • [37] Modeling Life Insurance Business Growth in Thailand using SARIMAX and Multilayer Perceptron
    Phaphan, Wikanda
    Jitpattanakul, Anuchit
    Huadsri, Supika
    Budsaba, Kamon
    Phapan, Wiyada
    Mekruksavanich, Sakorn
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 146 - 151
  • [38] The Multilayer Perceptron Approach to Lateral Motion Prediction of Surrounding Vehicles for Autonomous Vehicles
    Yoon, Seungje
    Kum, Dongsuk
    2016 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2016, : 1307 - 1312
  • [39] Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron
    Ehsan, R. Muhammad
    Simon, Sishaj P.
    Venkateswaran, P. R.
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (12): : 3981 - 3992
  • [40] Long-Term Forecasting the Survival in Liver Transplantation Using Multilayer Perceptron Networks
    Raji, C. G.
    Chandra, S. S. Vinod
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2318 - 2329