Prediction of the CATS benchmark using a business forecasting approach to multilayer perceptron modelling

被引:0
|
作者
Crone, SF [1 ]
Kausch, H [1 ]
Pressmar, D [1 ]
机构
[1] Univ Lancaster, Dept Management Sci, Lancaster, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various heuristic approaches have been proposed to limit design complexity and computing time in artificial neural network modelling and parameterisation for time series prediction, with no single approach demonstrating robust superiority on arbitrary datasets. In business forecasting competitions, simple methods robustly outperform complex methods and expert teams. To reflect this, we follow a simple neural network modelling approach, utilising linear autoregressive lags and an extensive enumeration of important modelling parameters, effectively modelling a miniature forecasting competition. Experimental predictions are computed for the CATS benchmark using a standard multilayer perceptron to predict 100 missing values in five datasets.
引用
收藏
页码:2783 / 2788
页数:6
相关论文
共 50 条
  • [1] Chromium Distribution Forecasting Using Multilayer Perceptron Neural Network and Multilayer Perceptron Residual Kriging
    Tarasov, Dmitry
    Buevich, Alexander
    Shichkin, Andrey
    Subbotina, Irina
    Tyagunov, Andrey
    Baglaeva, Elena
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [2] Forecasting Sales at Fuel Stations Using a Multilayer Perceptron
    Karonski, Aleksander
    Hernes, Marcin
    Walaszczyk, Ewa
    Rot, Artur
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, ACIIDS 2024, 2024, 2145 : 206 - 218
  • [3] Multilayer Perceptron with Cuckoo Search in Water Level Prediction for Flood Forecasting
    Phitakwinai, Suwannee
    Aucphanwiriyakul, Sansance
    Theera-Umpon, Nipon
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 519 - 524
  • [4] A new short term load forecasting using multilayer perceptron
    Kazeminejad, M.
    Dehghan, M.
    Motamadinejad, M. B.
    Rastegar, H.
    2006 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2007, : 284 - +
  • [5] An Efficient Rainfall Prediction Using Improved Multilayer Perceptron
    Kalangi R.R.
    Maloji S.
    Ahammad S.H.
    Rajesh V.
    Hossain M.A.
    Rashed A.N.Z.
    J. Inst. Eng. Ser. B, 5 (1159-1167): : 1159 - 1167
  • [6] Prediction of implementing ISO 14031 guidelines using a multilayer perceptron neural network approach
    Mansour, Mohamed
    Alsulamy, Saleh
    Dawood, Shaik
    PLOS ONE, 2021, 16 (01):
  • [7] Unemployment Prediction in UK by Using a Feedforward Multilayer Perceptron
    Kouziokas, Georgios N.
    OPERATIONAL RESEARCH IN THE DIGITAL ERA - ICT CHALLENGES, 2019, : 65 - 74
  • [8] Prediction of active peak force using a multilayer perceptron
    Niemelä M.
    Kulmala J.-P.
    Kauppi J.-P.
    Kosonen J.
    Äyrämö S.
    Niemelä, Marko (marko.p.niemela@jyu.fi), 2017, Springer London (20) : 213 - 219
  • [9] An intelligent bankruptcy prediction model using a multilayer perceptron
    Brenes, Raffael Forch
    Johannssen, Arne
    Chukhrova, Nataliya
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2022, 16
  • [10] Forecasting Photovoltaic Energy Generation Using Multilayer Perceptron Neural Network
    Adeyemi, K. O.
    Eniola, V.
    Kalu-Uka, G. M.
    Zarmai, M.
    Uthman, M.
    Bala, E.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2022, 12 (04): : 1742 - 1753