Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag-Leffler Function

被引:5
|
作者
Nonlaopon, Kamsing [1 ]
Farid, Ghulam [2 ]
Yasmeen, Hafsa [2 ]
Shah, Farooq Ahmed [2 ]
Jung, Chahn Yong [3 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock 43600, Pakistan
[3] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 05期
关键词
integral operators; fractional integral operators; bounds; (alpha; m)-convex function; symmetry;
D O I
10.3390/sym14050922
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper aims to obtain the bounds of a class of integral operators containing Mittag-Leffler functions in their kernels. A recently defined unified Mittag-Leffler function plays a vital role in connecting the results of this paper with the well-known bounds of fractional integral operators published in the recent past. The symmetry of a function about a line is a fascinating property that plays an important role in mathematical inequalities. A variant of the Hermite-Hadamard inequality is established using the closely symmetric property for (alpha, m)-convex functions.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function
    Abbas, G.
    Farid, G.
    COGENT MATHEMATICS, 2016, 3
  • [2] Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function
    Farid, Ghulam
    Abbas, Ghulam
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 23 - 35
  • [3] On a Unified Mittag-Leffler Function and Associated Fractional Integral Operator
    Zhang, Yanyan
    Farid, Ghulam
    Salleh, Zabidin
    Ahmad, Ayyaz
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [4] Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function
    Ghulam Abbas
    Khuram Ali Khan
    Ghulam Farid
    Atiq Ur Rehman
    Journal of Inequalities and Applications, 2017
  • [5] Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function
    Abbas, Ghulam
    Khan, Khuram Ali
    Farid, Ghulam
    Rehman, Atiq Ur
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [6] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    Farid, G.
    Khan, K. A.
    Latif, N.
    Rehman, A. U.
    Mehmood, S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [7] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    G. Farid
    K. A. Khan
    N. Latif
    A. U. Rehman
    S. Mehmood
    Journal of Inequalities and Applications, 2018
  • [8] Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function
    Rashid, Saima
    Safdar, Farhat
    Akdemir, Ahmet Ocak
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [9] Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function
    Saima Rashid
    Farhat Safdar
    Ahmet Ocak Akdemir
    Muhammad Aslam Noor
    Khalida Inayat Noor
    Journal of Inequalities and Applications, 2019
  • [10] Fractional versions of Minkowski-type integral inequalities via unified Mittag-Leffler function
    Shuang-Shuang Zhou
    Ghulam Farid
    Ayyaz Ahmad
    Advances in Continuous and Discrete Models, 2022