Complete minors in pseudorandom graphs

被引:0
|
作者
Thomason, A [1 ]
机构
[1] DPMMS, Cambridge CB2 1SB, England
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Random graphs have the smallest complete miners among all graphs of given order and density. We show that, unlike random graphs, many well-known examples of pseudorandom graphs (such as Paley graphs) have very large miners. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:26 / 28
页数:3
相关论文
共 50 条
  • [21] Pseudorandom Graphs in Data Structures
    Reingold, Omer
    Rothblum, Ron D.
    Wieder, Udi
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT I, 2014, 8572 : 943 - 954
  • [22] Clique factors in pseudorandom graphs
    Morris, Patrick
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2025, 27 (02)
  • [23] Hamilton cycles in pseudorandom graphs
    Glock, Stefan
    Correia, David Munha
    Sudakov, Benny
    ADVANCES IN MATHEMATICS, 2024, 458
  • [24] Hamiltonicity of sparse pseudorandom graphs
    Ferber, Asaf
    Han, Jie
    Mao, Dingjia
    Vershynin, Roman
    COMBINATORICS PROBABILITY AND COMPUTING, 2025,
  • [26] Minors in Random Regular Graphs
    Fountoulakis, Nikolaos
    Kuehn, Daniela
    Osthus, Deryk
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (04) : 444 - 463
  • [27] Topological minors in bipartite graphs
    Camino Balbuena
    Martín Cera
    Pedro García-Vázquez
    Juan Carlos Valenzuela
    Acta Mathematica Sinica, English Series, 2011, 27 : 2085 - 2100
  • [28] GRID MINORS OF GRAPHS ON THE TORUS
    DEGRAAF, M
    SCHRIJVER, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 61 (01) : 57 - 62
  • [29] Small minors in dense graphs
    Fiorini, Samuel
    Joret, Gwenael
    Theis, Dirk Oliver
    Wood, David R.
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (06) : 1226 - 1245
  • [30] Embedding graphs with bounded degree in sparse pseudorandom graphs
    Y. Kohayakawa
    V. Rödl
    P. Sissokho
    Israel Journal of Mathematics, 2004, 139 : 93 - 137