Embedding graphs with bounded degree in sparse pseudorandom graphs

被引:0
|
作者
Y. Kohayakawa
V. Rödl
P. Sissokho
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
[2] Emory University,Department of Mathematics and Computer Science
[3] Illinois State University,Department of Mathematics
来源
关键词
Directed Graph; Random Graph; Sparse Graph; Graph Sequence; Bound Degree;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show the equivalence of somequasi-random properties for sparse graphs, that is, graphsG with edge densityp=|E(G)|/(2n)=o(1), whereo(1)→0 asn=|V(G)|→∞. Our main result (Theorem 16) is the following embedding result. For a graphJ, writeNJ(x) for the neighborhood of the vertexx inJ, and letδ(J) andΔ(J) be the minimum and the maximum degree inJ. LetH be atriangle-free graph and setdH=max{δ(J):J⊆H}. Moreover, putDH=min{2dH,Δ(H)}. LetC>1 be a fixed constant and supposep=p(n)≫n−1DH. We show that ifG is such thatdegG(x)≤Cpn for allx∈V(G),for all 2≤r≤DH and for all distinct verticesx1, ...,xr ∈V(G),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left| {N_G (x_1 ) \cap \cdots \cap N_G (x_r )} \right| \leqslant Cnp^r $$ \end{document},for all but at mosto(n2) pairs {x1,x2} ⊆V(G),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\| {N_G (x_1 ) \cap N_G (x_2 )\left| { - np^2 } \right| = o(np_2 )} \right.$$ \end{document}, then the number of labeled copies ofH inG is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N(H,G_n ) = (1 + o(1))n^{\left| {V(H)} \right|} p^{\left| {E(H)} \right|} $$ \end{document}.
引用
收藏
页码:93 / 137
页数:44
相关论文
共 50 条
  • [1] Embedding graphs with bounded degree in sparse pseudorandom graphs
    Kohayakawa, Y
    Rödl, V
    Sissokho, P
    ISRAEL JOURNAL OF MATHEMATICS, 2004, 139 (1) : 93 - 137
  • [2] Sparse partition universal graphs for graphs of bounded degree
    Kohayakawa, Yoshiharu
    Roedl, Vojtech
    Schacht, Mathias
    Szemeredi, Endre
    ADVANCES IN MATHEMATICS, 2011, 226 (06) : 5041 - 5065
  • [3] Sparse universal graphs for bounded-degree graphs
    Alon, Noga
    Capalbo, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (02) : 123 - 133
  • [4] EMBEDDING SPANNING BOUNDED DEGREE GRAPHS IN RANDOMLY PERTURBED GRAPHS
    Bottcher, Julia
    Montgomery, Richard
    Parczyk, Olaf
    Person, Yury
    MATHEMATIKA, 2020, 66 (02) : 422 - 447
  • [5] Sparse multipartite graphs as partition universal for graphs with bounded degree
    Lin, Qizhong
    Li, Yusheng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (03) : 724 - 739
  • [6] Sparse multipartite graphs as partition universal for graphs with bounded degree
    Qizhong Lin
    Yusheng Li
    Journal of Combinatorial Optimization, 2018, 35 : 724 - 739
  • [7] On embedding graphs with bounded sum of size and maximum degree
    Zak, Andrzej
    DISCRETE MATHEMATICS, 2014, 329 : 12 - 18
  • [8] Hamiltonicity of sparse pseudorandom graphs
    Ferber, Asaf
    Han, Jie
    Mao, Dingjia
    Vershynin, Roman
    COMBINATORICS PROBABILITY AND COMPUTING, 2025,
  • [9] Decomposition of Sparse Graphs into Forests and a Graph with Bounded Degree
    Kim, Seog-Jin
    Kostochka, Alexandr V.
    West, Douglas B.
    Wu, Hehui
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2013, 74 (04) : 369 - 391
  • [10] Extremal results in sparse pseudorandom graphs
    Conlon, David
    Fox, Jacob
    Zhao, Yufei
    ADVANCES IN MATHEMATICS, 2014, 256 : 206 - 290