Holes in Generalized Reed-Muller Codes

被引:1
|
作者
Lovett, Shachar [1 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
Polynomials; Reed-Muller codes; regularity; weight distribution;
D O I
10.1109/TIT.2010.2046206
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The possible relative weights of codewords of Generalized Reed-Muller codes are studied. Let RMq(r, m) denote the code of polynomials over the finite field F-q in m variables of total degree at most r. The relative weight of a codeword f is an element of RMq(r, m) is the fraction of nonzero entries in f. The possible relative weights are studied, when the field F-q and the degree r are fixed, and the number of variables m tends to infinity. It is proved that the set of possible weights is sparse-for any a which is not rational of the form alpha = l/q(k), there exists some epsilon > 0 such that no weights fall in the interval (alpha - epsilon, alpha + epsilon). This demonstrates a new property of the weight distribution of Generalized Reed-Muller codes.
引用
收藏
页码:2583 / 2586
页数:4
相关论文
共 50 条
  • [41] Linear codes of 2-designs as subcodes of the generalized Reed-Muller codes
    He, Zhiwen
    Wen, Jiejing
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (03): : 407 - 423
  • [42] GENERALIZED REED-MULLER EXPANSIONS
    SWAMY, S
    IEEE TRANSACTIONS ON COMPUTERS, 1972, C 21 (09) : 1008 - &
  • [43] Linear codes of 2-designs as subcodes of the generalized Reed-Muller codes
    Zhiwen He
    Jiejing Wen
    Cryptography and Communications, 2021, 13 : 407 - 423
  • [44] Generalized LDPC codes and turbo-product codes with reed-muller component codes
    Djordjevic, Ivan B.
    TELSIKS 2007: 8TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS IN MODERN SATELLITE, CABLE AND BROADCASTING SERVICES, VOLS 1 AND 2, 2007, : 127 - 134
  • [45] The Treewidth of MDS and Reed-Muller Codes
    Kashyap, Navin
    Thangaraj, Andrew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4837 - 4847
  • [46] Optimal Testing of Reed-Muller Codes
    Bhattacharyya, Arnab
    Kopparty, Swastik
    Schoenebeck, Grant
    Sudan, Madhu
    Zuckerman, David
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 488 - 497
  • [47] A NOTE ON REED-MULLER CODES - COMMENT
    KAUSHIK, ML
    DISCRETE APPLIED MATHEMATICS, 1983, 6 (02) : 213 - 214
  • [48] Hulls of projective Reed-Muller codes
    Kaplan, Nathan
    Kim, Jon-Lark
    DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (03) : 683 - 699
  • [49] THE PARAMETERS OF PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    DISCRETE MATHEMATICS, 1990, 81 (02) : 217 - 221
  • [50] Minimal codewords in Reed-Muller codes
    Schillewaert, J.
    Storme, L.
    Thas, J. A.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (03) : 273 - 286