Linear codes of 2-designs as subcodes of the generalized Reed-Muller codes

被引:1
|
作者
He, Zhiwen [1 ]
Wen, Jiejing [2 ,3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Shandong Univ, Key Lab Cryptol Technol & Informat Secur, Minist Educ, Qingdao 266237, Peoples R China
[3] Shandong Univ, Sch Cyber Sci & Technol, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Ternary code; 2-design; Incidence matrix; Generalized Reed-Muller code; INFINITE FAMILIES; 3-DESIGNS;
D O I
10.1007/s12095-021-00472-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is devoted to the affine-invariant ternary codes defined by Hermitian functions. We first compute the incidence matrices of the 2-designs supported by the minimum weight codewords of these ternary codes. Then we show that the linear codes spanned by the rows of these incidence matrices are subcodes of the 4-th order generalized Reed-Muller codes and also hold 2-designs. Finally, we determine the dimension and develop a lower bound on the minimum distance of the ternary linear codes.
引用
收藏
页码:407 / 423
页数:17
相关论文
共 50 条
  • [1] Linear codes of 2-designs as subcodes of the generalized Reed-Muller codes
    Zhiwen He
    Jiejing Wen
    Cryptography and Communications, 2021, 13 : 407 - 423
  • [2] Linear codes of 2-designs associated with subcodes of the ternary generalized Reed-Muller codes
    Ding, Cunsheng
    Tang, Chunming
    Tonchev, Vladimir D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 625 - 641
  • [3] Linear codes of 2-designs associated with subcodes of the ternary generalized Reed–Muller codes
    Cunsheng Ding
    Chunming Tang
    Vladimir D. Tonchev
    Designs, Codes and Cryptography, 2020, 88 : 625 - 641
  • [4] Cyclic subcodes of generalized Reed-Muller codes
    Moreno, O
    Duursma, IM
    Cherdieu, JP
    Edouard, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) : 307 - 311
  • [5] ON SUBCODES OF GENERALIZED 2ND ORDER REED-MULLER CODES
    TIERSMA, HJ
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (04): : 583 - 591
  • [6] Subfield subcodes of projective Reed-Muller codes
    Gimenez, Philippe
    Ruano, Diego
    San-Jose, Rodrigo
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 94
  • [7] GENERALIZED REED-MULLER CODES
    KASAMI, T
    LIN, S
    PETERSON, WW
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1968, 51 (03): : 96 - &
  • [8] GENERALIZED REED-MULLER CODES
    WEISS, E
    INFORMATION AND CONTROL, 1962, 5 (03): : 213 - &
  • [9] Recursive list decoding for reed-muller codes and their subcodes
    Dumer, I
    Shabunov, K
    INFORMATION, CODING AND MATHEMATICS, 2002, 687 : 279 - 298
  • [10] The linear codes of t-designs held in the Reed-Muller and Simplex codes
    Cunsheng Ding
    Chunming Tang
    Cryptography and Communications, 2021, 13 : 927 - 949