Linear codes of 2-designs as subcodes of the generalized Reed-Muller codes

被引:1
|
作者
He, Zhiwen [1 ]
Wen, Jiejing [2 ,3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Shandong Univ, Key Lab Cryptol Technol & Informat Secur, Minist Educ, Qingdao 266237, Peoples R China
[3] Shandong Univ, Sch Cyber Sci & Technol, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Ternary code; 2-design; Incidence matrix; Generalized Reed-Muller code; INFINITE FAMILIES; 3-DESIGNS;
D O I
10.1007/s12095-021-00472-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is devoted to the affine-invariant ternary codes defined by Hermitian functions. We first compute the incidence matrices of the 2-designs supported by the minimum weight codewords of these ternary codes. Then we show that the linear codes spanned by the rows of these incidence matrices are subcodes of the 4-th order generalized Reed-Muller codes and also hold 2-designs. Finally, we determine the dimension and develop a lower bound on the minimum distance of the ternary linear codes.
引用
收藏
页码:407 / 423
页数:17
相关论文
共 50 条
  • [31] Generalized LDPC codes and turbo-product codes with reed-muller component codes
    Djordjevic, Ivan B.
    TELSIKS 2007: 8TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS IN MODERN SATELLITE, CABLE AND BROADCASTING SERVICES, VOLS 1 AND 2, 2007, : 127 - 134
  • [32] Classification of Hadamard products of one-codimensional subcodes of Reed-Muller codes
    Chizhov, Ivan, V
    Borodin, Mikhail A.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2022, 32 (05): : 297 - 311
  • [33] PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 125 - 129
  • [34] Testing Reed-Muller codes
    Alon, N
    Kaufman, T
    Krivelevich, M
    Litsyn, S
    Ron, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 4032 - 4039
  • [35] On Z4-linear codes with the parameters of Reed-Muller codes
    Solov'eva, F. I.
    PROBLEMS OF INFORMATION TRANSMISSION, 2007, 43 (01) : 26 - 32
  • [36] Quaternary Reed-Muller codes
    Borges, J
    Fernández, C
    Phelps, KT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2686 - 2691
  • [37] Sampling-Based Estimates of the Sizes of Constrained Subcodes of Reed-Muller Codes
    Rameshwar, V. Arvind
    Jain, Shreyas
    Kashyap, Navin
    2024 NATIONAL CONFERENCE ON COMMUNICATIONS, NCC, 2024,
  • [38] ON A CONJECTURE ON REED-MULLER CODES
    WASAN, SK
    GAMES, RA
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1984, 56 (02) : 269 - 271
  • [39] Reed-Muller Codes Polarize
    Abbe, Emmanuel
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7311 - 7332
  • [40] Generalized Reed-Muller codes and curves with many points
    van der Geer, G
    van der Vlugt, M
    JOURNAL OF NUMBER THEORY, 1998, 72 (02) : 257 - 268