Linear codes of 2-designs as subcodes of the generalized Reed-Muller codes

被引:1
|
作者
He, Zhiwen [1 ]
Wen, Jiejing [2 ,3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Shandong Univ, Key Lab Cryptol Technol & Informat Secur, Minist Educ, Qingdao 266237, Peoples R China
[3] Shandong Univ, Sch Cyber Sci & Technol, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Ternary code; 2-design; Incidence matrix; Generalized Reed-Muller code; INFINITE FAMILIES; 3-DESIGNS;
D O I
10.1007/s12095-021-00472-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is devoted to the affine-invariant ternary codes defined by Hermitian functions. We first compute the incidence matrices of the 2-designs supported by the minimum weight codewords of these ternary codes. Then we show that the linear codes spanned by the rows of these incidence matrices are subcodes of the 4-th order generalized Reed-Muller codes and also hold 2-designs. Finally, we determine the dimension and develop a lower bound on the minimum distance of the ternary linear codes.
引用
收藏
页码:407 / 423
页数:17
相关论文
共 50 条