Bayesian network classifiers versus k-NN classifier using sequential feature selection

被引:0
|
作者
Pernkopf, F [1 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to compare Bayesian network classifiers to the k-NN classifier based on a subset of features. This subset is established by means of sequential feature selection methods. Experimental results show that Bayesian network classifiers more often achieve a better classification rate on different data sets than selective k-NN classifiers, The k-NN classifier performs well in the case where the number of samples for learning the parameters of the Bayesian network is small. Bayesian network classifiers outperform selective k-NN methods in terms of memory requirements and computational demands. This paper demonstrates the strength of Bayesian networks for classification.
引用
收藏
页码:360 / 365
页数:6
相关论文
共 50 条
  • [41] Home Security System Based on k-NN Classifier
    Junoh, A. K.
    Manor, M. N.
    Abu, S. A.
    Ahmad, Wan W. Z.
    Mukhtar, A. Z.
    Fauzi, S. F.
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 1811 - 1815
  • [42] Feature selection for Bayesian network classifiers using the MDL-FS score
    Drugan, Madalina M.
    Wiering, Marco A.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2010, 51 (06) : 695 - 717
  • [43] Predictive Monitoring System Using K-NN, QDC Classifiers of Physiological Data
    Vaidya, Madhav
    Dahatkar, Nidhi
    Kolhe, Balika
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS, ICTIS 2018, VOL 2, 2019, 107 : 181 - 188
  • [44] An incremental and hierarchical K-NN classifier for handwritten characters
    Rodriguez, C
    Boto, F
    Soraluze, I
    Pérez, A
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL III, PROCEEDINGS, 2002, : 98 - 101
  • [45] Optimization of K-NN by feature weight learning
    Shi, Q
    Lv, L
    Chen, H
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 2828 - 2831
  • [46] Induction motor fault diagnosis based on the k-NN and optimal feature selection
    Nguyen, Ngoc-Tu
    Lee, Hong-Hee
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2010, 97 (09) : 1071 - 1081
  • [47] Real time bus travel time prediction using k-NN classifier
    Kumar, B. Anil
    Jairam, R.
    Arkatkar, Shriniwas S.
    Vanajakshi, Lelitha
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2019, 11 (07): : 362 - 372
  • [48] A high performance k-NN classifier using a binary correlation matrix memory
    Zhou, P
    Austin, J
    Kennedy, J
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 713 - 719
  • [49] Supervised Semantic Analysis of Product Reviews Using Weighted k-NN Classifier
    Srivastava, Ankita
    Singh, M. P.
    Kumar, Prabhat
    2014 11TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS (ITNG), 2014, : 502 - 507
  • [50] ARSkNN-A k-NN Classifier Using Mass Based Similarity Measure
    Kumar, Ashish
    Bhatnagar, Roheet
    Srivastava, Sumit
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014, 2015, 46 : 457 - 462