Bayesian network classifiers versus k-NN classifier using sequential feature selection

被引:0
|
作者
Pernkopf, F [1 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to compare Bayesian network classifiers to the k-NN classifier based on a subset of features. This subset is established by means of sequential feature selection methods. Experimental results show that Bayesian network classifiers more often achieve a better classification rate on different data sets than selective k-NN classifiers, The k-NN classifier performs well in the case where the number of samples for learning the parameters of the Bayesian network is small. Bayesian network classifiers outperform selective k-NN methods in terms of memory requirements and computational demands. This paper demonstrates the strength of Bayesian networks for classification.
引用
收藏
页码:360 / 365
页数:6
相关论文
共 50 条
  • [21] Fast multistage algorithm for K-NN classifiers
    Soraluze, I
    Rodriguez, C
    Boto, F
    Cortes, A
    PROGRESS IN PATTERN RECOGNITION, SPEECH AND IMAGE ANALYSIS, 2003, 2905 : 448 - 455
  • [22] k-NN classifiers: investigating the k = k (n) relationship
    Alippi, C.
    Fuhrman, M.
    Roveri, M.
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3676 - +
  • [23] A Hierarchical K-NN Classifier for Textual Data
    Duwairi, Rehab
    Al-Zubaidi, Rania
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2011, 8 (03) : 251 - 259
  • [24] Privately computing a distributed k-nn classifier
    Kantarcioglu, M
    Clifton, C
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 279 - 290
  • [25] A K-NN associated fuzzy evidential reasoning classifier with adaptive neighbor selection
    Zhu, HW
    Basir, O
    THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2003, : 709 - 712
  • [26] K-NN PREEDITING DESIGN OF TREE CLASSIFIER
    WANG, QR
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1987, 30 (03): : 326 - 336
  • [27] Using Dominant Sets for k-NN Prototype Selection
    Vascon, Sebastiano
    Cristani, Marco
    Pelillo, Marcello
    Murino, Vittorio
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 131 - 140
  • [28] Performance of K-NN Classifier for Emotion Detection Using EEG Signals
    Kaundanya, Vaishnavi L.
    Patil, Anita
    Panat, Ashish
    2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2015, : 1160 - 1164
  • [29] Supervised texture segmentation using DWT and a modified K-NN classifier
    Ng, BW
    Bouzerdoum, A
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 545 - 548
  • [30] Shape and textural based image retrieval using K-NN classifier
    Pande, Sandeep Dwarkanath
    Rathod, Suresh Baliram
    Chetty, Manna Sheela Rani
    Pathak, Shantanu
    Jadhav, Pramod Pandurang
    Godse, Sachin P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (04) : 4757 - 4768