Glutamate triggers long-distance, calcium-based plant defense signaling

被引:625
|
作者
Toyota, Masatsugu [1 ,2 ,3 ]
Spencer, Dirk [2 ,9 ]
Sawai-Toyota, Satoe [2 ,10 ]
Wang Jiaqi [1 ]
Zhang, Tong [4 ,5 ,11 ]
Koo, Abraham J. [4 ,5 ]
Howe, Gregg A. [6 ,7 ,8 ]
Gilroy, Simon [2 ]
机构
[1] Saitama Univ, Dept Biochem & Mol Biol, Saitama 3388570, Japan
[2] Univ Wisconsin, Dept Bot, Madison, WI 53593 USA
[3] JST, PRESTO, Saitama 3320012, Japan
[4] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
[5] Univ Missouri, Interdisciplinary Plant Grp, Columbia, MO 65211 USA
[6] Michigan State Univ, Dept Energy PRL, E Lansing, MI 48824 USA
[7] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[8] Michigan State Univ, Plant Resilience Inst, E Lansing, MI 48824 USA
[9] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[10] Leica Microsyst, Tokyo 1690075, Japan
[11] South China Agr Univ, Coll Agr, Guangzhou, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
SIEVE ELEMENTS; CA2+;
D O I
10.1126/science.aat7744
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Animals require rapid, long-range molecular signaling networks to integrate sensing and response throughout their bodies. The amino acid glutamate acts as an excitatory neurotransmitter in the vertebrate central nervous system, facilitating long-range information exchange via activation of glutamate receptor channels. Similarly, plants sense local signals, such as herbivore attack, and transmit this information throughout the plant body to rapidly activate defense responses in undamaged parts. Here we show that glutamate is a wound signal in plants. Ion channels of the GLUTAMATE RECEPTOR-LIKE family act as sensors that convert this signal into an increase in intracellular calcium ion concentration that propagates to distant organs, where defense responses are then induced.
引用
收藏
页码:1112 / +
页数:4
相关论文
共 50 条
  • [31] Salicylic acid: transport and long-distance immune signaling
    Kachroo, Pradeep
    Liu, Huazhen
    Kachroo, Aardra
    CURRENT OPINION IN VIROLOGY, 2020, 42 : 53 - 57
  • [32] Long-Distance Signaling: What Grafting has Revealed?
    Lucas Aparecido Gaion
    Rogério Falleiros Carvalho
    Journal of Plant Growth Regulation, 2018, 37 : 694 - 704
  • [33] Long-distance signaling to control root nodule number
    Oka-Kira, Erika
    Kawaguchi, Masayoshi
    CURRENT OPINION IN PLANT BIOLOGY, 2006, 9 (05) : 496 - 502
  • [34] Neurotrophin Signaling via Long-Distance Axonal Transport
    Chowdary, Praveen D.
    Che, Dung L.
    Cui, Bianxiao
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 63, 2012, 63 : 571 - 594
  • [35] Long-Distance Retinoid Signaling in the Zebra Finch Brain
    Roeske, Tina C.
    Scharff, Constance
    Olson, Christopher R.
    Nshdejan, Arpik
    Mello, Claudio V.
    PLOS ONE, 2014, 9 (11):
  • [36] Plant morphogenesis: long-distance coordination and local patterning
    Berleth, T
    Sachs, T
    CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (01) : 57 - 62
  • [37] Environmental Effects on Whole Plant Long-distance Transport
    Gent, Martin P. N.
    HORTSCIENCE, 2012, 47 (09) : S110 - S110
  • [38] Humans as Long-Distance Dispersers of Rural Plant Communities
    Auffret, Alistair G.
    Cousins, Sara A. O.
    PLOS ONE, 2013, 8 (05):
  • [39] Frequent long-distance plant colonization in the changing Arctic
    Alsos, Inger Greve
    Eidesen, Pernille Bronken
    Ehrich, Dorothee
    Skrede, Inger
    Westergaard, Kristine
    Jacobsen, Gro Hilde
    Landvik, Jon Y.
    Taberlet, Pierre
    Brochmann, Christian
    SCIENCE, 2007, 316 (5831) : 1606 - 1609
  • [40] LONG-DISTANCE PLANT DISPERSAL IN THE NORTH POLAR REGIONS
    POLUNIN, N
    NATURE, 1955, 176 (4470) : 22 - 24