Glutamate triggers long-distance, calcium-based plant defense signaling

被引:625
|
作者
Toyota, Masatsugu [1 ,2 ,3 ]
Spencer, Dirk [2 ,9 ]
Sawai-Toyota, Satoe [2 ,10 ]
Wang Jiaqi [1 ]
Zhang, Tong [4 ,5 ,11 ]
Koo, Abraham J. [4 ,5 ]
Howe, Gregg A. [6 ,7 ,8 ]
Gilroy, Simon [2 ]
机构
[1] Saitama Univ, Dept Biochem & Mol Biol, Saitama 3388570, Japan
[2] Univ Wisconsin, Dept Bot, Madison, WI 53593 USA
[3] JST, PRESTO, Saitama 3320012, Japan
[4] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
[5] Univ Missouri, Interdisciplinary Plant Grp, Columbia, MO 65211 USA
[6] Michigan State Univ, Dept Energy PRL, E Lansing, MI 48824 USA
[7] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[8] Michigan State Univ, Plant Resilience Inst, E Lansing, MI 48824 USA
[9] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[10] Leica Microsyst, Tokyo 1690075, Japan
[11] South China Agr Univ, Coll Agr, Guangzhou, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
SIEVE ELEMENTS; CA2+;
D O I
10.1126/science.aat7744
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Animals require rapid, long-range molecular signaling networks to integrate sensing and response throughout their bodies. The amino acid glutamate acts as an excitatory neurotransmitter in the vertebrate central nervous system, facilitating long-range information exchange via activation of glutamate receptor channels. Similarly, plants sense local signals, such as herbivore attack, and transmit this information throughout the plant body to rapidly activate defense responses in undamaged parts. Here we show that glutamate is a wound signal in plants. Ion channels of the GLUTAMATE RECEPTOR-LIKE family act as sensors that convert this signal into an increase in intracellular calcium ion concentration that propagates to distant organs, where defense responses are then induced.
引用
收藏
页码:1112 / +
页数:4
相关论文
共 50 条
  • [21] International Symposium on Long-Distance Signaling in Plants
    Kiba, Takatoshi
    PLANT AND CELL PHYSIOLOGY, 2018, 59 (09) : 1697 - 1699
  • [22] Long-distance signaling of iron deficiency in plants
    Enomoto, Yusuke
    Goto, Fumiyuki
    PLANT SIGNALING & BEHAVIOR, 2008, 3 (06) : 396 - 397
  • [23] Evolution of the Calcium-Based Intracellular Signaling System
    Marchadier, Elodie
    Oates, Matt E.
    Fang, Hai
    Donoghue, Philip C. J.
    Hetherington, Alistair M.
    Gough, Julian
    GENOME BIOLOGY AND EVOLUTION, 2016, 8 (07): : 2118 - 2132
  • [24] Long-distance seed dispersal in plant populations
    Cain, ML
    Milligan, BG
    Strand, AE
    AMERICAN JOURNAL OF BOTANY, 2000, 87 (09) : 1217 - 1227
  • [25] CONSEQUENCES OF LONG-DISTANCE DISPERSAL OF PLANT MACROFOSSILS
    HILL, RS
    NEW ZEALAND JOURNAL OF BOTANY, 1981, 19 (02) : 241 - 242
  • [26] Electrical Wiring and Long-Distance Plant Communication
    Hedrich, Rainer
    Salvador-Recatala, Vicenta
    Dreyer, Ingo
    TRENDS IN PLANT SCIENCE, 2016, 21 (05) : 376 - 387
  • [27] Systemin-mediated long-distance systemic defense responses
    Zhang, Haiyan
    Zhang, Hui
    Lin, Jinxing
    NEW PHYTOLOGIST, 2020, 226 (06) : 1573 - 1582
  • [28] Systemic regulation of nodulation via long-distance signaling
    Kawaguchi, M.
    FEBS JOURNAL, 2008, 275 : 43 - 43
  • [29] Long-Distance Signaling: What Grafting has Revealed?
    Gaion, Lucas Aparecido
    Carvalho, Rogerio Falleiros
    JOURNAL OF PLANT GROWTH REGULATION, 2018, 37 (02) : 694 - 704
  • [30] Long-distance regressive signaling in neural development and disease
    Pathak, Amrita
    Clark, Shayla
    Bronfman, Francisca C.
    Deppmann, Christopher D.
    Carter, Bruce D.
    WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY, 2021, 10 (02)