Quasi-Monte Carlo Integration on the Unit Disk

被引:0
|
作者
Ghose, Sayan [1 ]
Pohlman, Lawrence [2 ]
机构
[1] Nashua High Sch North, Nashua, NH 03063 USA
[2] Univ Masschusetts, Boston, MA USA
关键词
Numerical Integration; Quasi-Monte Carlo Methods; Quasi-Random Sequences; Discrepancy; Scenario Analysis; Coordinate Transformation;
D O I
10.1109/CCWC51732.2021.9376006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quasi-Monte Carlo integration uses deterministic, low discrepancy sequences, such as the Halton or the Sobol sequence, to carry out numerical integration or search. These quasi random sequences are defined over the unit interval, or its multidimensional analogues, i.e. the unit square, cube, or hypercube. However, there are applications where we need quasi random sequences that are defined over a circular, spherical, or ellipsoidal domains. We study the performance of quasi random sequences for integration on a unit disk by generating quasi-random sequences defined over the unit square and transforming them to sequences defined on the unit disk by using coordinate transformations. We evaluate integrals defined over a circular disk and find that quasi-Monte Carlo integration using Sobol sequences outperforms Monte Carlo integration using pseudo-random sequences.
引用
收藏
页码:329 / 333
页数:5
相关论文
共 50 条
  • [41] Bidirectional ray tracing for the integration of illumination by the quasi-Monte Carlo method
    Voloboi, AG
    Galaktionov, VA
    Dmitriev, KA
    Kopylov, EA
    PROGRAMMING AND COMPUTER SOFTWARE, 2004, 30 (05) : 258 - 265
  • [42] Higher order Quasi-Monte Carlo integration for Bayesian PDE Inversion
    Dick, Josef
    Gantner, Robert N.
    Le Gia, Quoc T.
    Schwab, Christoph
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (01) : 144 - 172
  • [43] A quasi-Monte Carlo integration method applied to the computation of the Pollaczek integral
    Legrand, Xavier
    Xemard, Alain
    Fleury, Gerard
    Auriol, Philippe
    Nucci, Carlo Alberto
    IEEE TRANSACTIONS ON POWER DELIVERY, 2008, 23 (03) : 1527 - 1534
  • [44] Quasi-Monte Carlo integration of characteristic functions and the rejection sampling method
    Wang, XQ
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) : 16 - 26
  • [45] Parallel quasi-Monte Carlo integration using (t,s)-sequences
    Schmid, WC
    Uhl, A
    PARALLEL COMPUTATION, 1999, 1557 : 96 - 106
  • [46] MULTIDIMENSIONAL QUASI-MONTE CARLO INTEGRATION IN WEIGHTED ANCHORED SOBOLEV SPACES
    Grozdanov, Vassil
    Shabani, Elmi
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2024, 77 (12): : 1743 - 1751
  • [47] Quasi-Monte Carlo Methods for the Numerical Integration of Multivariate Walsh Series
    Larcher, G.
    Schmid, W. C.
    Wolf, R.
    Mathematical and Computer Modelling (Oxford), 23 (8-9):
  • [48] Bidirectional Ray Tracing for the Integration of Illumination by the Quasi-Monte Carlo Method
    A. G. Voloboi
    V. A. Galaktionov
    K. A. Dmitriev
    E. A. Kopylov
    Programming and Computer Software, 2004, 30 : 258 - 265
  • [49] Quasi-Monte Carlo methods for the numerical integration of multivariate Walsh series
    Larcher, G
    Schmid, WC
    Wolf, R
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : 55 - 67
  • [50] Quasi-Monte Carlo integration over Rs based on digital nets
    Dick, Josef
    Pillichshammer, Friedrich
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 462