Quasi-Monte Carlo Integration on the Unit Disk

被引:0
|
作者
Ghose, Sayan [1 ]
Pohlman, Lawrence [2 ]
机构
[1] Nashua High Sch North, Nashua, NH 03063 USA
[2] Univ Masschusetts, Boston, MA USA
关键词
Numerical Integration; Quasi-Monte Carlo Methods; Quasi-Random Sequences; Discrepancy; Scenario Analysis; Coordinate Transformation;
D O I
10.1109/CCWC51732.2021.9376006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quasi-Monte Carlo integration uses deterministic, low discrepancy sequences, such as the Halton or the Sobol sequence, to carry out numerical integration or search. These quasi random sequences are defined over the unit interval, or its multidimensional analogues, i.e. the unit square, cube, or hypercube. However, there are applications where we need quasi random sequences that are defined over a circular, spherical, or ellipsoidal domains. We study the performance of quasi random sequences for integration on a unit disk by generating quasi-random sequences defined over the unit square and transforming them to sequences defined on the unit disk by using coordinate transformations. We evaluate integrals defined over a circular disk and find that quasi-Monte Carlo integration using Sobol sequences outperforms Monte Carlo integration using pseudo-random sequences.
引用
收藏
页码:329 / 333
页数:5
相关论文
共 50 条
  • [31] On Monte Carlo and Quasi-Monte Carlo for Matrix Computations
    Alexandrov, Vassil
    Davila, Diego
    Esquivel-Flores, Oscar
    Karaivanova, Aneta
    Gurov, Todor
    Atanassov, Emanouil
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 249 - 257
  • [32] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [33] Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
    Kleiss, Ronald
    Lazopoulos, Achilleas
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (02) : 93 - 115
  • [34] MATHEMATICAL BASIS OF MONTE CARLO AND QUASI-MONTE CARLO METHODS
    ZAREMBA, SK
    SIAM REVIEW, 1968, 10 (03) : 303 - &
  • [35] An analysis of quasi-Monte Carlo integration applied to the transillumination radiosity method
    SzirmayKalos, L
    Foris, T
    Neumann, L
    Csebfalvi, B
    COMPUTER GRAPHICS FORUM, 1997, 16 (03) : C271 - C281
  • [36] Error bounds for quasi-Monte Carlo integration with uniform point sets
    Niederreiter, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (02) : 283 - 292
  • [37] Monte Carlo and quasi-Monte Carlo methods for computer graphics
    Shirley, Peter
    Edwards, Dave
    Boulos, Solomon
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 167 - 177
  • [38] A review of Monte Carlo and quasi-Monte Carlo sampling techniques
    Hung, Ying-Chao
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (01)
  • [39] Quasi-monte carlo methods for numerical integration of multivariate Haar series
    Karl Entacher
    BIT Numerical Mathematics, 1997, 37 : 846 - 861
  • [40] A new quasi-Monte Carlo algorithm for numerical integration of smooth functions
    Atanassov, EI
    Dimov, IT
    Durchova, MK
    LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 128 - 135