Generalized macroscale model for Cosserat elasticity using Generalized Multiscale Finite Element Method

被引:6
|
作者
Ammosov, Dmitry [1 ]
Efendiev, Yalchin [2 ]
Grekova, Elena [3 ]
Vasilyeva, Maria [4 ]
机构
[1] North Eastern Fed Univ, Inst Math & Informat, Dept Computat Technol, Yakutsk 677980, Republic Of Sak, Russia
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Russian Acad Sci, Lab Mechatron, Inst Problems Mech Engn, Bolshoy Pr VO 61, St Petersburg 199178, Russia
[4] Texas A&M Univ, Dept Math & Stat, Corpus Christi, TX 78412 USA
关键词
Cosserat; Multiscale; GMsFE; Macroscale; LINEAR-THEORY; HOMOGENIZATION; EXISTENCE; STRESS; MATTER;
D O I
10.1016/j.jcp.2022.111011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Yalchin Efendiev would like to acknowledge the support of Mega-grant of the Russian Federation Government (N 14.Y26.31.0013). Maria Vasilyeva would like to thank the support of College of Science & Engineering, Texas A & M University -Corpus Christi. Dmitry Ammosov is supported by Russian government project Science and Universities 121110900017-5 aimed at supporting junior laboratories. Elena Grekova acknowledges financial support of the Ministry of Science and Higher Education of the Russian Federation in frames of the state assignment carried out at IPME RAS.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Nonconforming generalized multiscale finite element methods
    Lee, Chak Shing
    Sheen, Dongwoo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 215 - 229
  • [32] Generalized multiscale finite element methods (GMsFEM)
    Efendiev, Yalchin
    Galvis, Juan
    Hou, Thomas Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 116 - 135
  • [33] Generalized Multiscale Finite Element Method for the poroelasticity problem in multicontinuum media
    Tyrylgin, Aleksei
    Vasilyeva, Maria
    Spiridonov, Denis
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 374
  • [34] An exponential integration generalized multiscale finite element method for parabolic problems
    Contreras, L. F.
    Pardo, D.
    Abreu, E.
    Munoz-Matute, J.
    Diaz, C.
    Galvis, J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 479
  • [35] Generalized Multiscale Finite Element Method for discrete network (graph) models
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 457
  • [36] Application of a conservative, generalized multiscale finite element method to flow models
    Bush, Lawrence
    Ginting, Victor
    Presho, Michael
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 : 395 - 409
  • [37] Least-squares mixed generalized multiscale finite element method
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 : 764 - 787
  • [38] GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR HIGHLY HETEROGENEOUS COMPRESSIBLE FLOW
    Fu, Shubin
    Chung, Eric
    Zhao, Lina
    MULTISCALE MODELING & SIMULATION, 2022, 20 (04): : 1437 - 1467
  • [39] CONSTRAINT ENERGY MINIMIZING GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR CONVECTION
    Zhao, Lina
    Chung, Eric
    MULTISCALE MODELING & SIMULATION, 2023, 21 (02): : 735 - 752
  • [40] A generalized phase field multiscale finite element method for brittle fracture
    Triantafyllou, Savvas P.
    Kakouris, Emmanouil G.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (09) : 1915 - 1945