Generalized macroscale model for Cosserat elasticity using Generalized Multiscale Finite Element Method

被引:6
|
作者
Ammosov, Dmitry [1 ]
Efendiev, Yalchin [2 ]
Grekova, Elena [3 ]
Vasilyeva, Maria [4 ]
机构
[1] North Eastern Fed Univ, Inst Math & Informat, Dept Computat Technol, Yakutsk 677980, Republic Of Sak, Russia
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Russian Acad Sci, Lab Mechatron, Inst Problems Mech Engn, Bolshoy Pr VO 61, St Petersburg 199178, Russia
[4] Texas A&M Univ, Dept Math & Stat, Corpus Christi, TX 78412 USA
关键词
Cosserat; Multiscale; GMsFE; Macroscale; LINEAR-THEORY; HOMOGENIZATION; EXISTENCE; STRESS; MATTER;
D O I
10.1016/j.jcp.2022.111011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Yalchin Efendiev would like to acknowledge the support of Mega-grant of the Russian Federation Government (N 14.Y26.31.0013). Maria Vasilyeva would like to thank the support of College of Science & Engineering, Texas A & M University -Corpus Christi. Dmitry Ammosov is supported by Russian government project Science and Universities 121110900017-5 aimed at supporting junior laboratories. Elena Grekova acknowledges financial support of the Ministry of Science and Higher Education of the Russian Federation in frames of the state assignment carried out at IPME RAS.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods
    Chung, Eric
    Efendiev, Yalchin
    Hou, Thomas Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 320 : 69 - 95
  • [22] Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method
    Efendiev Y.
    Lee S.
    Li G.
    Yao J.
    Zhang N.
    GEM - International Journal on Geomathematics, 2015, 6 (02) : 141 - 162
  • [23] A hybridizable discontinuous Galerkin Generalized Multiscale Finite element method for highly heterogeneous linear elasticity problems
    Ma, Weijun
    Fu, Shubin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383
  • [24] Multiscale Model Reduction of the Flow Problem in Fractured Porous Media Using Mixed Generalized Multiscale Finite Element Method
    Spiridonov, D.
    Vasilyeva, M.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'18), 2018, 2025
  • [25] Constraint Energy Minimizing Generalized Multiscale Finite Element Method
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 339 : 298 - 319
  • [26] CONSTRAINT ENERGY MINIMIZING GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR DUAL CONTINUUM MODEL
    Cheung, Siu Wun
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Vasilyeva, Maria
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (03) : 663 - 685
  • [27] Fast online generalized multiscale finite element method using constraint energy minimization
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 : 450 - 463
  • [28] MACHINE COMPUTATION USING THE EXPONENTIALLY CONVERGENT MULTISCALE SPECTRAL GENERALIZED FINITE ELEMENT METHOD
    Babuska, Ivo
    Xu Huang
    Lipton, Robert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (02): : 493 - 515
  • [29] Constraint Energy Minimizing Generalized Multiscale Finite Element Method for High-Contrast Linear Elasticity Problem
    Fu, Shubin
    Chung, Eric T.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (03) : 809 - 827
  • [30] Topology Optimization - unconventional approaches using the Generalized Finite Element Method and the Stable Generalized Finite Element Method
    de Arruda, Lucas Sardinha
    Martim, Matheus Baarini
    Gois, Wesley
    de Lima, Cicero Ribeiro
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2022, 19 (03):