Mean Value Inequalities for Motzkin Numbers

被引:0
|
作者
Agoh, Takashi [1 ]
Alzer, Horst [2 ]
机构
[1] Tokyo Univ Sci, Dept Math, Noda, Chiba 2788510, Japan
[2] Morsbacher Str 10, D-51545 Waldbrol, Germany
关键词
Motzkin number; inequality; mean value;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following up on results of Aigner, we present some inequalities for Motzkin numbers M-n. In particular, we prove that the sequence (1/M-n)(n >= 1) is strictly convex.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Mean Value Inequalities for Jump Processes
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 421 - 437
  • [22] A MEAN VALUE THEOREM IN GEOMETRY OF NUMBERS
    SIEGEL, CL
    ANNALS OF MATHEMATICS, 1945, 46 (02) : 340 - 347
  • [23] A classification of Motzkin numbers modulo 8
    Wang, Ying
    Xin, Guoce
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [24] Hankel transforms of generalized Motzkin numbers
    Bojicic, Radica
    Petkovic, Marko D.
    Rajkovic, Predrag M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) : 5810 - 5820
  • [25] Taylor expansions for Catalan and Motzkin numbers
    Eu, SP
    Liu, SC
    Yeh, YN
    ADVANCES IN APPLIED MATHEMATICS, 2002, 29 (03) : 345 - 357
  • [26] Motzkin Numbers: an Operational Point of View
    Artioli, M.
    Dattoli, G.
    Licciardi, S.
    Pagnutti, S.
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (07)
  • [27] On Motzkin numbers and central trinomial coefficients
    Sun, Zhi-Wei
    ADVANCES IN APPLIED MATHEMATICS, 2022, 136
  • [28] Vexillary Involutions are Enumerated by Motzkin Numbers
    O. Guibert
    E. Pergola
    R. Pinzani
    Annals of Combinatorics, 2001, 5 (2) : 153 - 174
  • [29] Motzkin Numbers: an Operational Point of View
    Artioli, M.
    Dattoli, G.
    Licciardi, S.
    Pagnutti, S.
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (07)
  • [30] Bijective interpretation of a recurrence of Motzkin numbers
    Dulucq, S
    Penaud, JG
    DISCRETE MATHEMATICS, 2002, 256 (03) : 671 - 676