On Motzkin numbers and central trinomial coefficients

被引:6
|
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Motzkin number; Central trinomial coefficient; Delannoy number; Schroder number; Congruence; TELESCOPING METHOD; CONGRUENCES; SCHRODER; SUMS;
D O I
10.1016/j.aam.2021.102319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Motzkin numbers M-n = n-expressionry sumexpressiontion (n)(k=0)(n2k)(2kk)/(k+1) (n = 0,1,2, horizontexpressionl ellipsis ) and the central trinomial coefficients T-n (n = 0,1,2, horizontexpressionl ellipsis ) given by the constant term of (1+x+x(-1))(n), have many combinatorial interpretations. In this paper we establish the following surprising arithmetic properties of them with n any positive integer: 2/n n-expressionry sumexpressiontion (n)(k=1)(2k+1)M-k(2)is an element of Z,<br />n(2)(n(2)-1)6| n-expressionry sumexpressiontion (n-1)(k=0)k(k+1)(8k+9)TkTk+1,<br />and also<br /> n-expressionry sumexpressiontion (n-1)(k=0)(k+1)(k+2)(2k+3)M(k)(2)3(n-1-k )= n(n+1)(n+2)MnMn-1. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条