WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR CONVECTION-DIFFUSION EQUATIONS IN UNIFORMLY LOCAL LEBESGUE SPACES

被引:0
|
作者
Haque, M. D. Rabiul [1 ]
Ioku, Norisuke [1 ]
Ogawa, Takayoshi [1 ,2 ]
Sato, Ryuichi [2 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Anal, Sendai, Miyagi 9808578, Japan
关键词
LARGE TIME BEHAVIOR; LINEAR PARABOLIC EQUATIONS; HEAT-EQUATION; R-N; EXISTENCE; NONEXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the well-posedness of the Cauchy problem for convection-diffusion equations in uniformly local Lebesgue spaces L-uloc(r)(R-n). In our setting, an initial function that is spatially periodic or converges to a nonzero constant at infinity is admitted. Our result is applicable to the one dimensional viscous Burgers equation. For the proof, we use the L-uloc(p) - L-uloc(q) estimate for the heat semigroup obtained by Maekawa-Terasawa [20], the Banach fixed point theorem, and the comparison principle.
引用
收藏
页码:223 / 244
页数:22
相关论文
共 50 条
  • [1] Local well-posedness for the Cauchy problem of the MHD equations with mass diffusion
    Fan, Jishan
    Ni, Lidiao
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (07) : 792 - 797
  • [2] On Well-Posedness of the Cauchy Problem for Pseudohyperbolic Equations in Weighted Sobolev Spaces
    L. N. Bondar
    G. V. Demidenko
    Siberian Mathematical Journal, 2023, 64 : 1076 - 1090
  • [3] On Well-Posedness of the Cauchy Problem for Pseudohyperbolic Equations in Weighted Sobolev Spaces
    Bondar, L. N.
    Demidenko, G. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (05) : 1076 - 1090
  • [4] LOCAL WELL POSEDNESS OF CAUCHY PROBLEM FOR VISCOUS DIFFUSION EQUATIONS
    Liu, Yacheng
    Xu, Runzhang
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (04) : 509 - 519
  • [5] Well-posedness of the Cauchy problem for inclusions in Banach spaces
    Mel'nikova, IV
    Gladchenko, AV
    DOKLADY AKADEMII NAUK, 1998, 361 (06) : 736 - 739
  • [6] Well-Posedness for the Cauchy Problem for a System of Semirelativistic Equations
    Fujiwara, Kazumasa
    Machihara, Shuji
    Ozawa, Tohru
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (01) : 367 - 391
  • [7] Well-Posedness for the Cauchy Problem for a System of Semirelativistic Equations
    Kazumasa Fujiwara
    Shuji Machihara
    Tohru Ozawa
    Communications in Mathematical Physics, 2015, 338 : 367 - 391
  • [8] On the Well-Posedness of the Cauchy Problem for the Generalized Telegraph Equations
    Kostin, V. A.
    Kostin, A. V.
    Salim, Badran Yasim Salim
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (03): : 50 - 59
  • [9] On the well-posedness of the Cauchy problem for an MHD system in Besov spaces
    Miao, Changxing
    Yuan, Baoquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (01) : 53 - 76
  • [10] Well-posedness of the Cauchy problem for the fractional power dissipative equations
    Miao, Changxing
    Yuan, Baoquan
    Zhang, Bo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 461 - 484