WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR CONVECTION-DIFFUSION EQUATIONS IN UNIFORMLY LOCAL LEBESGUE SPACES

被引:0
|
作者
Haque, M. D. Rabiul [1 ]
Ioku, Norisuke [1 ]
Ogawa, Takayoshi [1 ,2 ]
Sato, Ryuichi [2 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Anal, Sendai, Miyagi 9808578, Japan
关键词
LARGE TIME BEHAVIOR; LINEAR PARABOLIC EQUATIONS; HEAT-EQUATION; R-N; EXISTENCE; NONEXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the well-posedness of the Cauchy problem for convection-diffusion equations in uniformly local Lebesgue spaces L-uloc(r)(R-n). In our setting, an initial function that is spatially periodic or converges to a nonzero constant at infinity is admitted. Our result is applicable to the one dimensional viscous Burgers equation. For the proof, we use the L-uloc(p) - L-uloc(q) estimate for the heat semigroup obtained by Maekawa-Terasawa [20], the Banach fixed point theorem, and the comparison principle.
引用
收藏
页码:223 / 244
页数:22
相关论文
共 50 条